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4.1 INTRODUCTION

While going through Unit 7 of the course “Atoms and Molecules” (CHE-01), you
might have appreciated the use of vibrational spectroscopy as an analytical technique
for the determination of molecular structure. In the last block of this course, two units
viz. Units 1 and 3 have been devoted to atomic spectra and rotational spectra,
respectively. In this unit and Unit 5, we will discuss vibrational spectroscopy which is
another kind of spectroscopy dealing with molecules.

In this unit, the theory and applications of vibrational spectra of diatomic molecules
will be described. The vibrational spectra of polyatomic molecules is discussed in
Unit 5.

In this unit, we will start our discussion with the classical example of the vibration of a
single particle supported by a spring. The similarity of the vibration in a diatomic
molecule with the vibration of a single particle is then brought about and possible
transitions for the harmonic oscillator model of diatomic molecules are discussed. This
is followed by the explanation of observed vibrational spectra of diatomic molecules,
the introduction of anharmonicity and the rotational- vibrational spectra of diatomic
molccules.
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Objectives

After studying this unit, you should be able to:
e discuss Hooke’s law and motion of a harmonic oscillator,

e explain observed intrared spectra of diatomic molecules,

o evaluate harmonic frequency of diatomic oscillator, force constant and
anharmonicity constant from the observed infrared spectra,

e predict vibrational frequencies of isotopically substituted molecules if the
-vibrational frequencies of unsubstituted molecules are known,

evaluate zero point energies, and
explain rotational-vibrational spectra of diatomic molecules.

L 4.2 HARMONIC OSCILLATOR

Consider a particle of mass m held by a rigid support through a spring as shown in Fig.
4.1(a). When this particle is displaced from its equilibrium position (a) see Fig. 4.1

Rigid support = 7

Particle of mass m

Fig. 4.1: Contraction (¢) and expansion (b) of the spring showing displacement of the particle
from its equilibrium position (a). The restoring froce F acts in a direction opposite to
the direction of displacement.

using some external force (like pushing or pulling by hand), it is observed that the
particle tends to go back to its equilibrium position after the force is withdrawn. As it
will be explained in sub-Sec4.2.2, the particle not only goes back to its equilibrium
position but goes still further on the opposite side till the distance is equal to the initial
displacement and if there is no frictional loss or gravitational pull, the particle keeps
moving between the two extremes in a periodic motion. Such oscillations are referred
to as Simple Harmonkc Motion (SHM) and the particle is referred as a Harmonic
Oscillator.

4.2.1 Hooke’s Law

The motion of the particle referred above towards its equilibrium position after the
external force is withdrawn can be explained as follows. On giving a displacement (x)
to the particle, a force called restoring force (F) arises in the spring in the direction
opposite to that of the displacement and acts to bring it back to its equilibrium
position. A spring which behaves in this manner is said to obey Hooke’s law. Hooke’s
law states that the restoring force (F) is proportional to the displacement (x) and acisina
direction opposite to the direction of the displacement. This can be represented
mathematically as:

inuwr . xar the negative sign in Eq.
4.1 us that if the
t 15 positive, the

ree is negative and

Fa-x

or =~ kx «(4.1)
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The proportionality constant, k is called the force constant of the spring. The force of Distotic Moo

constant k is a measure of the strength of the spring. Hence, a large value of k means a
stronger and less flexible spring. From Eq. 4.1,it may be further noticed that for a
given value of x, a larger value of k will result into a larger restoring force.

4.2.2 Equation of Motion

It is experimentally observed that if the particle is displaced from its equilibrium
position by a distance +x; (Fig. 4.1b) and the external force is withdrawn, the particle
returns to the equilibrium positicn (Fig. 4.1a)-and then continues to move to a
position, —x,, away from the equilibrium position (Fig. 4.1c). The state of the sprin;
in Fig. 4.1(b) and 4.1(c) corresponds to the stretched and the compressed states.

respectively. And as mentioned above, if there is no frictional loss or gravitational !,
the particle continues to move between these two extremes passing through the
equilibrium position. If the value of the maximum displacements (also called
amplitude) on the two extremes is denoted by —x; and +x;, then the value of the

displacement (or amplitude) x after time ¢ sec is given by a cosine function (Fig. 4.2) as
shown below:

X =X COS 2TV ¢ ..(4.2)
where v is the oscillation frequency in sec L. Equation 4.2 represents the equation Similar to Eq. 4.2,
of motion of the particle. x can also be given as
X =X Sin 2T v -

You must also rememoer thit the
sin function is 90° caic <f
with respect to the vos f o

+Xo k.
v 1

o 4

Displacement (amplitude) =———s

time, { =—
Fig. 4.2: A cosine function represents the equation of motion of the harmonic oscillator.

4.2.3 Expressions for Force Constant and Characteristic Frequency

Now, the restoring force F in Eq. 4.1 can be represented in terms of Newton’s second 1
law of motion as:

F=ma v ...(4.3)

where a is the acceleration of motion which is denoted by second differential

2
of x with respect to time, i.e. a = :—; This on combination with Eq. 4.1 gives

2
m % =—kx .(4.4)
¢

Using Eq. 4.2 for x, we find




IR and Raman Spectra

X

2

d‘Z

=XqCOS 2 Ve !

=~ X0 2T ¥y SIN2 M Vg !
2

= — %0 (27 Vogc) COS 2 AVgect

= —4 nzvz,, X COS 2 L ¥, 5t

Note that work is given as
follows:
work = force X distance

2

d*x
de

2,2 - 2 g
= —A4n Vo, xgCOS 2V bt = -4 v X ..(4.5)

The results of Egs. 4.4 and 4.5 on combination give

- 2.2
—kx=-4n"vy, xm

From the above equation, we can get the expression for the force constant, k as
k=amvi.m . ..(4.6)

and that for the oscillation frequency, v as

1 k
Yosc =34 \/-;1' «(4.7)

Thus, for a given spring with force constant, k and a particle of mass, m there is only
one oscillation frequency possible, v , which is independent of the maximum displace-

ment of the particle. This is called characteristic frequency of the harmonic oscillator.

4.2.4 Potential Energy Curve

If F_,, is the external force applied to displace the particle by a distance dx, the work
done in doing so is stored as potential energy (P.E.), dV. Thus
&V=F, dx ..(4.8)

Since the external force is equal and opposite of the restoring force (~F) exerted by
the spring, we can write

dV = —Fdx ..(49)
or g—z =-F=kx or dV=kxdr ..(4.10)

If equilibrium position is taken as that of zero potential energy,integration of above
equation gives .

1
V= —z-kxz _ : ~(4.11)

Since potential energy varies linearly with the square of the displacement, a plot of ¥’

vs.x gives a parabola as shown in Fig. 4.3.

Potential Energy, V s

Fig. 4.3: Potentlal energy curve of the harmonic osclllator.
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Now let us imagine that the particle has been displaced by a distance x; and released. ‘
of Diatomic Molecules

When it is displaced by a distance x, at that point it has gained a potential energy of

1 kx(z,. After its release, say at a time ¢ if the displacement isx;, then its potential

2

. 1 . 1. 1 ‘ .
energy will be 'Ek xt2 . The difference, Ek xz - Ek xt2 represents the kinetic energy of the

particle which is given by %mv2 where v is the velocity of the particle at a displacement

x.. Thus,one can determine the velocity of the particle at a displacement x, if one knows
the values of m, k, x and x,.

Thus,
- — i 1
—k -2 = o m -(4.12)
Using v= %tx—’ we can write
1 (dr\®
KE.= 5m (E) = 2 mn? vgscxo sin (2nv . 0 ..(4.13)
_1 22 0 X =XQCO82 W ¥gec!
PE.= —2-k =2mna‘y cos (v t) .(4.14) ot
1 d—x-=-x027rvmsin2:rvmt
Total energy = —2- x(z) 2matvi  x} ~(415) , L
(;] =xo§:t Vosc SIN° 2T ¥ !

4.2,5 Quantisation and Energy Levels

As you have been introduced in Unit 2 of the “Atoms and Molecules” Course
(CHE-01), the motion of a microscopic particle can be described in quantum
mechanics by Schrédinger’s wave equation. Similarly, the motion of a harmonic
oscillator, if the particle involved is microscopic in nature, can be discussed by solving
Schrodinger wave equation. We shall not go into the details of the solution, however,,
we shall use the results obtained which are very interesting.

The wave equation of this system is given as

2
dy  8xm 8’ m E - —kx2)¢ 0 .(4.16)
dx? n?

where y is the wave function of the oscillator, A is Planck’s constant and E is the total

energy of the oscillator. The solution of this equation gives the energy, E as given You may remember from Unit 2 of

‘Atoms and Molecules’ (CHE-01)

below: course that Schrodinger Equation
h o 1 for a particle in one - dimension
=" x 1 can be given as follows:
E T / poo v+ 2) ..(4.17)
—} + o ME-V=0
where v is an integer and can take values 0, 1, 2, ......... etc. and is known as vibrational 8
quantum number, . Thus, forV= Ekx’, we get
Using Eq. 4.7, we can write Eq. 4.17 as given below: 33_13 + Ehzzﬂ E- %k Py =0
E=hvy | v+ (4.18)
0 2 ’

The expression for E given in Eq. 4.18 deserves some further analysis. It shows that E
has different values for different values of v . Increasing v by one integer increases the 9
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oscillator. This shows that the energy of the oscillator cannot be changed at will but it
can be only changed by a multiple of hv .. This is referred to as quantisation of

energy. By showing the values of E for varying values of v we can build up energy levels
as shown in Fig. 4.4,

E
y AE

3 Mo )

hvosc hosc
I m :
2 o 3
5 hvos }lmo,c
7 Tesc : 2
3 . L } MVgsc
y Moosc 1
7 Mosc 0 .

FVosc
—cm’
Absorption of radiation

Fig. 4.4: Energy levels of a harmonic oscillator.

4.3 DIATOMIC MOLECULE AS HARMONIC
OSCILLATOR

Let us now consider two particles of masses n, and m, joined together by a spring

having a force constant k (Fig. 4.5a). The distance of separation between the particles
is 7,. The spring can be stretched and compressed by pulling the two particles apart

(Fig. 4.5b) or by pushing them to come closer (Fig. 4.5¢).

heTeTeTeTeYeTeJeTe10! b
—"n bi— r >
{COM
0O

Fig. 4.5: Stretching and compression of two particles joined together by a spring.

10 ) Point O in Fig. 4.5 indicates the centre of mass and 7; and r, denote distances of the




particles 1 and 2, respectively, from the centre of mass O. If the new distance of
separation of the two particles in Fig. 4.5 (b or c) is referred to as 7, the displacement
of m, with respect to m, given by r — 7, (while keeping the centre of mass at O) can be

employed in the equations of motion (similar to Eq. 4.4) as follows:

mldzrl

- —k(r —r,) (4.19)
and
m2 dz"z
Y = —k(r—r,) ...(4.20)
Sincer = ry + r and myry = myr,, we get
my m
I -—1 (421
n m1+m2r and r, m1+m2r (4.21)

Using these expressions for r; and r,, Egs. 4.19 and 4.20 reduce to

my d* [—]
T k-1

We can take out m, and (m, + m,) out of differentiation because they are constant.

mym;  d*,

Thus, ——
(my+my) 4

Here my m,/(m, + m,) can be denoted by 4 which is called the reduced mass.

m1 m2
= —— . (423
H (4.23)
Thus, Eq. 4.22 can be rewritten as
&r (424)
H—s==k(r—r,) ..(4.24
ds
d¥r-r Ee-r 2
Since —————— ( ) = ﬂ because r is a constant, we substitute ¥ or d&r in
dé dé de d

Eq. 4.24 for having similarity in the variable on the two sides of the equation. Thus,

2 —
,ud(;t )——k(r—rc)

. (4.25)
A comparison of Eqs. 4.4 and 4.25 shows that the two expressions are similar if m of
Eq. 4.4 is identified with u of Eq. 4.25 and x of Eq. 4.4 is identified with r — 7. of Eq.
4.25. This leads us to conclude that the oscillational motion for two particles joined
together can be identified to the simple harmonic vibration of a particle of mass equal
tou and a displacement equal to r — r, (called A7) in the above case. Going on similar
analogy, therefore, we can write equations similar to Eqs. 4.2, 4.6, 4.7, 4.11 and 4.12 for
oscillations of the two particles joined by a spring viz.

Ar=Arycos2mv gt ... (4.26)
k=4n2v: u . (427)

Vibrational Spectra
of Diatomic Molecules

Note that the potential energy is
proportional to the square of
relative displacement of the
particle and is given by

1
V=5k(r —re)z

and the restoring force is given as
F=—k(r—r,).

Thus, the equations of motion for
the two particles 1 and m; are as

given by Eqs 4.19 and 4.20,
respectively.

From ml r,=m,r, wecan write

mrz

w (A)

w (B)

Fromr, +r, =r, we can say that

fl=l""f2

Using this value of 7 in Eq. A
above, we get

AL m,n,
=
m,
m, r—rz) m,r,
or
mlr—m1r2=m2r2

or
mr=(m,+m)r,
mr

— =7
(m2+m1)

or 2
Similarly, from the Eq. B above,
we can derive

mzr

ro=—
(m,+m)

11
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1 1k
Vose = 57 ANu ... (4.28)

1 2
V=skir- re) ... (4.29)
KE.= % uv ... (430)

where v is the characteristic oscillational frequency of the system under
consideration, and v = d (A r)/dt.

The vibrations in diatomic molecule can be treated in a similar way. Instead of the
spring with force constant k, we have in the case of diatomic molecules binding of the
wwo nuclei through a bond with a force constant k and these nuclei oscillate with a
characteristic oscillational frequency, v

Extending the similarity further the wave equation for oscillation in diatomic molecule
can be given similar to Eq 4.16 viz.

2 2
gy 8 [E—lmz] =0 431
ot | v . (431)
and the expression for energy similar to Eq. 4.17 can be given as
h k 1 :
E = .E /7 (V + 2) .er (4.32)

4.3.1 Zero Point Energy

Let us study the above equation more carefully. You will realise that even for v = 0,
the energy E is not zero and the molecule oscillates with a definite value of frequency.

The energy at v = 0 is given by E = %h Vosc and is referred to as zero point energy.

The zero point energy corresponds to the energy of the molecule in the vibrational
ground state. :

4.3.2 Infrared Spectra and Selection Rules

If infrared radiations are passed through a sample of diatomic molecules in the gas

‘phase and the transmitted radiations arc analysed through the monochromator and

detector of a spectrometer (for details of working see - Unit 9) an infrared spectrum is
obtained. The infrared spectrum results from the absorption of radiation causing
transition from one energy level to another. The observed line position in the spectrum
gives information about the difference between the energy levels. However, the
intensity of the spectral lines gives information about the population of levels involved
in the transition. The spectrum so obtained is characteristic of the diatomic molecule
under investigation. The spectrum is employed to get information about the vibrations
of the molecule and interactions between the vibrational and rotational motions.

The infrared spectral bands observed for HCI are shown schematically in Fig. 4.6. -
Notice a signal with a strong intensity followed by two more of weak intensity (Fig. 4.6
a). The positions of the signals are given in terms of frequency of radiation absorbed,

v (cm_l).
The frequency, v (sec'l) = ¢ ¥ (cm™), where ¢ is the velocity of light.

Because of various broadening mechanisms as well as rotational fine ;tructure, these
signals do not appear as single lines but appear as bands. Depending on the resolution
of the cquipment used, the bands show different type of features and fine structure as |
shown in Fig. 4.6 (c). We shall try to understand salient points of this spectrum in the
following sections.
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Fundamental
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Fig. 4.6 (a): Schematic representation of the positions and intensities of first three bands of HCI.
The numbers in notation 0—1, 02 and 0—3 indicate the initial and final levels of )
each transition.

(b) A typical potentiail energy curve for a diatomic molecuie. The minimum in the curve
T corresponds to the equilibrium distance between the atoms. Horizontal lines

represent vibrational levels. Transitions shown by a, b and ¢ are the fundamental,
first overtone and second overtone, respectively. The devlation from equal spacing
between energy levels is due to anharmonicity, as you will study in Sec 4.4.

(¢) Fundamental band of HCI under (I) low, (if) moderate and (lii) high resolutions.

As given in Fig. 4.4, the energy levels for diatomic molecules, when considered similar
to those of harmonic oscillator, are equidistant with an energy gap equal to 4 v,
where v is the vibrational frequency of the diatomic molecule in sec landh is

Planck’s constant. A promotion of the diatomic oscillator from a lower level to an
upper level can take place if an external energy, equal to the energy gap between the
two levels, is supplied. If the energy supplied is in the form of an electromagnetic

radiation with frequency v sec™?, a transition will occur if E = E,—E,=hvwhereE,
and E, denote energies of the final and the initial levels. Note the difference between v
osc ; the former denotes the frequency of electromagnetic radiation whereas the

latter denotes the oscillational frequency of the diatomic molecule. If the quantum
numbers, v for final and initial levels are given by v, and v, respectively, then

and v

hv=h vy (vy~V)) . ...(4.33)

An absorption of radiation takes place and the oscillator flips from energy level with
quantum number v; to that with v, as shown in Fig. 4.7. The transitions for which _

Av =1 are called fundamental transitions and those with Av = 2,34 etc. are called
first, second, third etc. overtones respectively.

Eq. 4.33 shows that a fundamental transition takes place if the frequency of
electromagnetic radiation is equal to the oscillational frequency of the diatomic molecule.
The overtone transitions take place if the frequency of electromagnetic radiation is an
integral multiple of the oscillational frequency.

13
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Remember that according to the
Boltzman distribution, the number
of molecules present in the excited
state (N?) are related to the
number of molecules in the _
ground state (N1) by the following

expression:
AE
w=e

14

hv="hvosc (v~ v))

El " \71

Fig. 4.7: Absorption of radiation and vibrational transition.

As you have noticed in Eq. ’4.33v, the harmonic oscillator with different energy levels
defined by different values of v, has different wave functions. As mentioned in the
appendix of Unit 2, an electric dipolar transition from energy level v; to vis only:

allowed in case the transition moment integral given below is non-zero, i.c.

+ o
_J; wV}M ¥, dt, .. (434)

where. v, and y, are wave functions for vrand v; levels, d 7y is volume element and M is
. ; .

dipole mo{nent operator. Without giving any further derivation, it can be stated that if
dipole moment is a linear function of internuclear distance of the diatomic molecule,
the above integral is nonzero only if Av = %1 and if the dipole moment is a non linear
function of internuclear distance, the above integral is nonzero for all integral values
of Av. However, in practice only transitions with Av = *1 are allowed for harmonic
oscillator model of diatomic molecules where the dipole moment is known to be a
linear function of the internuclear distance. The “ +” sign for Av above refers to
transitions from lower energy levels to higher levels whereas the “~” sign refers to
transitions from higher energy levels to lower energy levels. The absorption of
radiations thus corresponds to “+ ” sign and emission of radiations to “~” sign of the v
values given above, Further, expansion of dipole moment operator M in Eq. 4.34
shows that fundamental transitions are allowed only if d #’'d(A r)is non zero, i.e. the
vibration should be accompanied by a change in the dipole moment to show a
fundamental transition. Thus, the homonuclear diatomic molecules do not show any
absorption in the fundamental vibrational spectrum. These rules regarding which
transitions are allowed and which are forbidden, are referred to as Selection Rules.

Since the frequency of the electromagnetic radiation which satisfies the condition
given in Eq. 4.33 falls in the infrared region, these transitions are referred to as
infrared transitions and are observed in the infrared region of the spectrum. The
intensity of the band corresponds to the amount of radiation absorbed and is related
to the square of the transition moment integral (Eq. 4.34). The frequency at which the
maximum absorption is observed corresponds to the frequency of electromagnetic
radiation responsible for transition as defined by Eq. 4.33. According to the Boltzman
distribution, the number of oscillators in v > 0 level are expected to be very small at
room temperature; hence only transitions from v = 0—— v = 1 are observed where
the v, for the oscillator is equal to the frequency of the electromagnetic radiation

absorbed to give the fundamental transition. At higher temperaturesv=1——>v=2
etc. transitions may also be observed. Such transitions are referred to as hot
transitions (or hot bands in the spectrum).

4.3.3 Evaluation of Force Constant and Maximum Displacement
As we have noticed above, the frequency of electromagnetic radiation at which
absorption takes place can give the value of oscillational frequency of the diatomic

molecule, e.g. for a transition v,=0to v,=1.

AE=hv=hvy,, V="V .. (4.35)
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and if we know the reduced mass of the diatomic molecule, we can calculate the value
of Diatomic Molecuies

of force constant, k by using Eq. 4.27 and 4.28. Eqs. similar to 4.15 and 4.17 for
diatomic molecule can be employed to evaluate maximum displacement A r, for

various values of v as follows:

Total energy = %kAr% =2u nzvgccArﬁ

= (v + %] BV ..(4.36)

W+ 3)h
giving Arg==% — ' .. (4.37)
2u R Vg _ AE=E -E

1 1
=hv (Vf +5)=hvosc (vi +E)

SAQ1 1 1
= ue(l"'i)-hvue(o"'i)

HCl molecule shows an absorption at 2886 cm™ 2, Determine its force constant and 3 1
maximum displacements (changes in internuclear distance) for v = 0,1,2,3. = hVoue (E - 5)

= BV oec

4.3.4 Isotope Effect

We have noted above that the HC1 molecule absorbs radiation of 2886 cm™! frequency.
Let us see what changes we expect in the infrared spectrum, if HCl is changed to DCL.
This brings change in the reduced mass, i.e.

» 1 % 35.5 —27
M = =163x 10"k
HA™ 365 x 6.023 x 107 g
e = 2% 355 =314 % 1077 kg

37.5 % 6.023 x 105

Thus, we can say that

Kpa = 24ua ... (4.38)

The force constant is a property of the bond which in turn depends on the number of
electrons in H and D. Since number of electrons in H and D are equal it is assumed
~ that to a good degree of approximation that the force constant for HCl and DCl are

equal.
Using the above argument in Eq. 4.28, we can conclude that
’ 1

Vosc Tﬂ

Thus,
[pma }
HCI —_— .-
Yoso _ «/{‘E= Mmptma . [Mb_ s (4.39)
vc?s(c:l HHc mymg A\j my

+
my gy 15
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In geu : al, we can say that
i

= |8

i
H
. erev' and &' denote the
frequency and the reduced mass
for the isotopically substituted
molecule.

|

16

And since the fundamental transition takes place with electromagnetic radiation of
frequency equal to oscillational frequency, we can write that

YHCl _ PHO) _ V3
o
DCl  Vpqa

... (4.40)

' Thus, when HCl is changed to DCI, the fundamental transition in infrared spectrum is

observed at a lower frequency of electromagnetic radiation than that for HCI and the
ratio between these frequencies is given by Eq. 4.40.

SAQ2

If the fundamental transition for O-H species is observed at 3735 cm, find out the
position of the corresponding transition for O-D species.

SAQ3

Calculate the ratio between the zero point energies of HCl and DCI.

4.3.5 Vibrational Term Value

Eqgs. 4.28 and 4.32 give expression for energy of diatomic oscillator as follows:

E=hv(v+ %) . (4.41)
If we divide both sides of Eq 4.41 by Ac, we get

E - VOSC 1

= v+ 2) .. (4.42)

The term E/hc is referred to as the term value G(v) and the term v, /c, the harmonic

frequency ¥, . Both G(v) and 7, have the units of wave number i.e. cm™, thus giving
the new expression for energy of the vibrational levels in term values as follows.

G(¥) = Toge (v +73) (incm™) . (443)
This is a convenient expression for equating the frequency of the oscillator, 7. with

the frequency of the electromagnetic radiation absorbed for fundamental transition of
the harmonic oscillator, 7 as given below:

For V=0, G(O) = 5 . (4.44)
and for v=1, G(1)= %vm .. (4.45)
Thaus, G(1) = G(0) = Ppay = Pge ... (4.46)

It may be further noted that Eq. 4.44 represents the zero point-energy in cm !
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44 ANHARMONICITY

As was shown in Fig, 4.3, the potential energy curve of a harmonic oscillator is a
parabola. Increase of displacement x; continuously shows an increase in the energy. In

a diatomic molecule where change in the internuclear distance, A rj is equated to the
_displacement, x,, of harmonic oscillator, it is not realistically possible to expect higher
and higher potential energy with increasing value of A r, since after a certain'increase

in bond distance, dissociation takes place and the molecule breaks into the-constituent

atoms. The true variation of the potential energy with internuclear distance and the

potential energy function for harmonic oscillator model of diatomic molecule are Also note that in an anharmonic
shown in Fig. 4.8. oscillator, the energy levels are not -

Parabola
equally spaced in contrast to the
i case of a harmonic oscillator shown
i in Fig. 44.
> \ i
E 1 [ (anharmonic curve of
& ‘\ i / the diatomic molecule)
3 ‘i ......................... .:‘ (-
- H
g ) I
] Y ] v= D
-9 |1 T
\ 7 v=3 D,
i ...«.......w.; ve2
- el
! s
1
Te

Internuclear distance ===t

Figure 4.8 : The variation of potential energy with internuclear distance for a diatomic molecule
is shown by solld line. The potential energy function for a harmonic oscillator is
shown by broken line. .

The deviation from harmonic oscillator behaviour is termed as anharmonicity. Note
that the minimum in the curve occurs at r, the equilibrium internuclear distance. You
can also see that in the vicinity of r., the curve very closely approximates the harmonic
oscillator. However, at larger internuclear separation, the anharmonic curve shows
significant deviation from the harmonic curve,

You will now study about the Morse Potential function which gives a better agreement
with the real curve.

44.1 Morse Potential

A mathematical equation for expressing the potential energy of diatomic molecule was
given by P.M. Morse and is called Morse potential. This can be written as follows.

2
V(Ar) =D, [1 —eh A'] .. (447)
' ) Unlike a parabola, Morse curve
where Ar =r —r,, D, is dissociation energy of the molecule measured from the allows for dissociation at high

minithum of the curve and 8 a constant is given by ;:er: ) D
’ ] e dissociation energy, D,

P " measured at the minimum of the
B=v L2 2 ... (4.48) P.E. curve is called the
os¢ D.h equilibrium dissociation energy.
However, the spectroscopic

. - . dissociation energy, Dy is encigy of
where 7, ¢, h have their usual meaning and u4, D, and v are respectively the reduced Lo o ional Tevel
mass, dissociation energy and oscillational frequency. (v = 0). Thus,

~ Dy =Dy~ hveus

4.4.2 Energy Levels of Anharmonic Oscillator and Selection Rules

17

Since in our analysis of IR transitions, we are mainly concerned with bond distance
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Maclaurian series is given as
follows
2 3

¢ =1+x+—+§-|+

Note that X in Eq., 4.50 a is equal to
Posc Xe in BEq.4.50b.

Vosc — 6 Vosc Xe
2
Vosc— 4VoscXe
1
Vosc — 2 Vosc Xe
i
, ve(

Effect of anharmonicity on the
vibrational energy levels of a
diatomic molecule.
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§

near thé equilibrium value, 7, therefore, instead of using Morse potential, the

Maclaurian series expansion of potential energy is used for inclusion of anharmonicity
in the oscillator as follows:

3
v )_— it 2 RPN o+ 1|4V
d(Ar? Are0 3d@nan

@an’

Ar=0

1

==k (AP + < k3 an’ .. (4.49)

N

If we include higher terms like %—'k:,, (A r)3 etc. in the potential energy expression, the

oscillator is referred to as anharmonic oscillator and such additional terms are
referred to as anharmonicity terms of potential energy expression. Inclusion of
anharmonicity terms leads to an improved version of energy levels, transition energies
and selection rules.

The vibrational energy levels of the anharmonic oscillator can be expressed as

1

G (V) =7, (v+2) X( 2)2+Y(v+-;-)3+" ... (4.50 a)

X and Y are functions of constants k, , k3 etc. of Eq. 4.49 and are referred to as

anharmonicity constants. Usually the expression is turncated after two terms as Y is
far lesser in value than X, However, the equation of motion obtained by using a cubic
potential energy function is not easy to handle. One approximate solution to the
Schrodinger  equation that may be formed expresses the energy in terms

of the fundamental vibrational frequency, v, and anharmonicity constant

Xe» as follows.

G (V) =¥y (v + %)
Even with a linear dipole moment function, the anharmonic wave functions yield
selection rules Av = 1, *2 *3 etc., thus overtone bands get allowed due to
anharmonicity. The intensities of the overtone bands are, however, quite small in
comparison to the intensity of the fundamental band (Fig. 4.6 a). Due to added terms
in the energy expression (Eq. 4.50), the energy levels are no more equidistant and they
are found to converge.

~Foucke (V+ %) 2 ... (450 b)

Thus, the anharmonic correction reduces the energy of every level. The reduction is
greater for the higher energy levels. Thus, the spacing between the energy levels,
Ey 4+1)-E,,gets smaller as v gets larger. This was shown in Fig. 4.8 and the extent of

reduction is shown in the margin.

4.4.3 Evaluation of Anharmonicity Constants

The term values G (v) forv = 0, 1, 2, 3 for anharmonic oscillator are given below:

1. 1

o=V~ X +3 Ly .. (4.51)

G, = %vm %X + 2y . (452)
s 25, 15

Gy = IV 2 X +1>Y .. (4.53)
7. 343 |

Gy =17~ TX + 32y .. (4.54)



The energies of radiation in em™! for fundamental, first and second overtones can be of ;:::::7:;;;::::
given as
Touy =T —2X+ 2y ' (4.55)
0-»1 0sC 4 . e (4.
= - ) 31
Voo =2V —6X + = Y .. (4.56)
Poy =37, — 12X + 111 Y I (4.57)

Thus, by knowing the frequencies of electromagnetic radiation absorbed for
fundamental and overtone transitions, one can evaluate the oscxllatlonal frequency and
anharmonicity constants.

Also, the equilibrium dissociation energy, D, of a molecule can be calculated from its
spectroscopic dissociation energy, D, by using the following relation:

_ Pose Vosc¥e | VoseVe .
D, = Dy + 55— 4 % | - (458)

4.5 THE VIBRATING ROTATOR

In Unit 3, the pure rotations of diatomic molecules have been discussed and in the
preceding sections of this unit we have discussed pure vibrations of diatomic molecule.
The two motions have been discussed independent of each other. In reality, of course,
the rotational and vibrational motions take place simultaneously. In this section, we
now'see how the spectrum gets modified because of this mixing.

4.5.1 Energy Levels

The total energy is given as a sum of the rotational and vxbratlonal energies defined by
the quantum numbers v and J.

EV,J=G_(v)+F'<J)

= hvge (v 3) + BRI (T +1) N ... (4.59)
or ‘ ’ E, ;= hvosc(v+1) +th(v+;)
+ Bhe (J + 1) =DhcPP (J + 1)* + -~ .. (4.60)

forv=0,1,2...andJ =0,1,2...etc

where Eq. 4.59 represents rotational vibrational energy for harmonic oscillator and
rigid rotator whereas Eq. 4.60 represents the rotatlonal vibrational energy for
anharmomc oscillator and nonrigid rotator. :

4.5.2 The IR Spectra and P,Q,R Branches

The selection rules for transitions in vibrating rotator are same as given for rotations

and vibrations of diatomic molecules (Unit 3 and Sec 4.3.2) which state Av = +1 and

AJ = *1, Thus, for a fundamental vibrational transition A v = +1, we shall have a

series of transitions where AJ = +1 and another series where AJ = -1, The series

with A v= +1and AJ = +1 defines the transitions (00)-> (11), (01) - (12), (02) »

(13), (03) - (14), ... etc; whereas the series with A v= +1 and AJ = -1 defines the

transitions (01) - (10), (02) - (11), (03) - (12), (04) -» (13) etc. Here, the first ,

number in the parenthesis denotes vibrational quantum number (v) and the second . 19




IR and Raman Spectra number corresponds to the rotational quantum number (/). The transitions described
above are shown in Fig. 4.9,

AJ = +1 (R branch) AJ = -1 (P branch)
Aw==+1l Aw=#1
7
) I
I Y y
N v=1
1
, ¥
5
4
3
2 v=0
1
J"=0

Fig. 4.9: The series of transitions with Av = +1 and AJ = 1.

For the vibrational transition A v =+ 1, the series of transitions with AJ = -1 is called
P branch and the series of transitions with AJ = +1 is called R branch. For harmonic
oscillator and rigid rotator model

AE, y=E, y-Ey
=hvg (V' -V')+Bhc ' (' +1)-J" ("' + 1)] .. (4.61)

Forv' =1and v’ =0, the R branchis rcpresentcd‘by J'=J'" + 1and P branchis
represented by J ' = J '’ —1. The energy expressions for the two branches are given
below and they are shown schematically in Fig. 4.10.

AE, ;=hv,, +2Bhc(J" + 1), R branch . (4.62)

where J'' =0,1,2...

4 and AE, ;=hv,—2BhcJ'", P branch e (4.63)
whereJ'' =1,2,3... .
) R branth : P branch
P,
PS
R! Rl Pz
R‘ Ro P, ‘ P, 6

43 2 1 0l 2 3 & 5 6 r
AE v,y

Fig. 4.10: P and R branches showing energies of transitions with varying J '’ values.
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Since AJ = 0 is not allowed, the transition with AE_ ;= h v, is not observed under
these conditions. This is referred to as Q branch. The infrared spectrum of a diatomic
molecule with this model will have two rotational vibrational bands with a dip in the
centre corresponding to A J = 0 as shown in Fig. 4.11. In working out the expressions
for AE;, ;given by Eqs. 4.62 and 4.63, it is assumed that the diatomic molecule
behaves like a rigid rotator and harmonic oscillator and also that the rotational
constant B does not vary with the vibrational quantum number. In practice, however,
these assumptions are not true and the expressions get slightly modified when these

" assumptions are taken into consideration.

R branch

——

v,em—
low resolution

v,emt——

high resolution

Fig. 4.11: The vibrational rotational infrared spectrum of a diatomic molecule with rigid
rotator and harmonic oscillator model

4.5.3 Symmetric Top Vibrating Rotator Model

As mentioned in Unit 3, a diatomic molecule can be considered as linear rotator if
mass of electrons is ignored. The moment of inertia in the direction of the internuclear

axis is zero and the moments of inertia in the other two directions (x, y) perpendicular .

to this axis are equal and nonzero. In case the mass of the electrons is also considered.
the moment of inertia in the 2—direction is small but finite and therefore, I, = I, >> L.
This is referred to a symmetric top model. The selection rules under these conditions
for vibrational-rotational transitions get modified as Av= +1and AJ = 0, +1. The
molecules belonging to this category thus will have all the three (P, Q, R) branches
allowed and the infrared spectrum has a central branch (Q) surrounded by two
branches P and R on the low and high energy side of the Q branch. It is found that for

- HCl molecule only P and R branches are observed in the vibrational rotational

infrared spectrum whereas for NO molecule, all the three branches are observed.

Vibrational Spectra
of Diatomic Molecules
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See Fig. 4.6 carefully now and note down the various features of the infrared spectrum
you can explain.

46 SUMMARY

In this unit, you have learnt the properties of the motion of a single particle joined by
a spring fixed to a rigid wall. The motion follows Hooke’s law which states that the
restoring force is proportional to the displacement and acts in a-direction opposite to
the direction of the displacement. The displacement of the particle follows simple
harmonic motion and is represented by a cosine function of time, ¢ and characteristic
frequency v, The expressions for the Hooke’s law, Newton’s second law of motion

and simple harmonic motion are combined to obtain relationship between the - ,
oscillational frequency v, and force constant of the spring, k¥ (Eq. 4.7). The variation

of the potential energy of the motion of the particle with the displacement is shown by
a parabola. Expressions for the potential energy, kinetic energy and the total energy of
the particle at a displacement x are then derived on the basis of the parabolic variation
of the potential energy. It was shown how the use of Schrodinger wave equation for

harmonic oscillator gives expression for energy of the motion which is quantised giving
various energy levels with different values of quantum number v = 0, 1,2, 3 ... etc. It is
observed that the energy levels arg equidistant with a consecutive gap of /1 ;.. The

motion of two particles joined by a spring was then dealt with. The mathematical
derivation showed that the motion is equivalent to that of a harmonic oscillator
mentioned above such that its displacement is equal to the change in internuclear
distance and its mass is equal to the reduced mass of the two particles. The vibrations
of the diatomic molecule were treated in a way similar to the vibrations of two
particles joined by a spring, the internuclear bond made through the sharing of
electrons replaces the spring. Energy levels and other expressions similar to those
obtained for harmonic oscillator were used for studying the vibration of diatomic
molecule.

T

Absorption of radiation in the infrared region led to transition of the diatomic
oscillator from ground state energy level with (v = 0) to excited state. The frequency
of the electromagnetic radiation at which absorption takes place is characteristic of
the molecule, and is also equal to the frequency of oscillation of the diatomic
harmonic oscillator. The selection rules for the vibrational transition shows that only
transitions with A v = +1 are allowed. Also such transitions are allowed if there is a
change in the dipole moment during the vibration. These rules restrict such transitions
to be possible only for heteronuclear diatomic molecules from v = 0 to

v = 1levels. Due to Boltzman’s distribution, population in v > 0 is found to be very
small at room temperature for most of the common diatomic molecules; therefore,
transitions for v = 1 tov = 2 etc. are not observed. Evaluation of force constant and
maximum displacement, effect of isotopic substitution on oscillational frequency and
expression for zero point energy were discussed.

The observed behaviour of diatomic molecules regarding their dissociation at higher
internuclear distances is introduced in the form of anharmonicity in the potential
energy. expression. This led to some correction in the quantum mechanical energy
leading to a convergence in energy levels. Selection rules allow the observation of
overtones in the absorption spectrum of anharmonic oscillator which can be employed
22 : to evaluate anharmonicity constants. The last section on vibrating rotator showed that




simultaneous existance of vibrations and rotations in the diatomic molecules leads to

observation of fine structure in the absorption bands of IR spectra in terms of P, Q, R

branches.

4.7 TERMINAL QUESTIONS

1. What is the energy difference between energy levels of a harmonic oscillator?
2. Define zero point energy.

3. What are the selection rules for

(i) aharmonic oscillator to show vibrational spectrum and
(i1} an anharmonic oscillator to show vibrational spectrum ?

4. Calculate D, for Hy , if Dy = 213749 cm™

Vgse = 2321.7 cm™

— ~1
VascXe = 66.2 cm

VoscYe = 0.6 cm™!

4.8 ANSWERS

Self Assessment Questions
1. u=1627x10"kg
2.2
k=A4n"vy, u

Given v =2886 cm™". To get v osc from it, we have to multiply it by the velocity
of light, c.

Thus, k = 4n° (uﬁrosc cYu
=483 kgs =483 Nm™ |
| Ary=1.08x107,1.87 x 16‘9, 242x107° 286 x10° forv=0,1,2,3, .
respectively.
2. 0-D=2718cm™
By using mg = 15.9949 x 107 kg
my =1.007825 x 10 kg
mp =2.014101 x 107 kg
and then calculating x and using Eq. 4.39.
3. E,HCVE,DCl= 2
4. Fundamental, T and II overtones at 2886, 5668 and 8346 cm™!

" (i) Overtones are weaker than fundamentals.

(ii) Harmonic oscillators — only fundamental transitions are allowed, (A v = A).
Anharmonic oscillators — fundamental and overtones are allowed,
(Av=0,1,2,etc).

Vibrational Spectra
of Diatomic Molecules
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aman Spectra (iii) At high resolution, rotational fine structure shows P and R branches and

a dip is observed in the place of Q branch since transitions with AJ =0
are not allowed.

Terminal Questions

1. h v

2.  The energy of the molecule at v = 0, i.c. at vibrational ground level is
called zero point energy. o

3. A v = #+1 for harmonic oscillator

Av= %1 %2 +3etc. for an anharmonic oscillator.

4,  ~22540cm”,
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