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4.1 INTRODUCTION 

While going through Unit 7 of the course "Atoms and Molec,uIes" (CHE-Ol), you 
might have appreciated the use of vibrational spectroscopy as an analytical technique 
for the determination of molecular structure. In the last block of this course, two units 
viz. Units 1 and 3 have been devoted to atomic spectra and rotational spectra, 
respectively. In this unit and Unit 5, we will discuss vibrational spectroscopy which is 
another kind of spectroscopy dealing with molecules. 

In this unit, the theory and applications of vibrational spectra of diatomic molecules 
will be described. The vibrational spectra of polyatomic molecules is discussed in 
Unit 5. 

In this unit, we will start our di.scussion with the classical example of the vibration of a 
single particle supported by a spring. The similarity of the vibration in a diatomic 
molecule with the vibration of a single particle is then brought about and possible 
transitions for the harmonic os;cillator model of diatomic molecules are discussed. This 
is followed by the explanation of observed vibrational spectra of diatomic molecules, 
the introductioli of anharlnonicity and the rotational- vibrational spectra of diatomic 
molecules. 
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Objectives 

After studying this unit, you should be able to: 

discuss Hooke's law and motion of a harmonic oscillator, 

explain observed infrared spectra of diatomic molecules, 

a evaluate harmonic frequency of diatomic oscillator, force constant and 
anharmonicity constant from the observed infrared spectra, 

predict vibrational frequencies of isotopically substituted molecules if the 
vibrational frequencies of unsubstituted molecules are known, 

evaluate zero point energies, and 

explain rotational-vibrational spectra of diatomic molecules. 

4.2 HARMONIC OSCILLATOR 

Consider a particle of mass m held by a rigid support through a spring as shown in Fig. 
4.l(a). When this particle is displaced from its equilibrium position (a) see Fig. 4.1 . 

Rigid support -+ 
Particle of mass 111 

(c) 

(4 

(b) 

Flg. 4.1: Contractlon (c) and expanslon (b) of the spring showlng displacement of the par- 
from Its equllibrlum posltlon (a). The restoring froce Facts h a dlreetlon opposltc Lo 
the dlrectlon of dlsplaccment. 

using some external force (like pushing or pulling by hand), it is observed that the 
particle tends to go back to its equilibrium position after the force is withdrawn. As it 
will be explained in sub-Sec.4.2.2, the particle not only goes back to its equilibrium 
position but goes still further on the opposite side till the distance is equal to the initial 
displacement and if there is no frictional loss or gravitational pull, the particle keeps 
moving betwekn the two extremes in a periodic motion. Such oscillations are referred 
to as Simple Harmonic Motion (SHM) and the particle is referred ais a Harmonic 
Oscillator. 

4.2.1 Hooke's Law 

The motion of the particle referred above towards its equilibrium position after the 
external force is withdrawn can be explained as follows. On giving a displacement (x)  
to the particle, a force called restoring force (F) arises in the spring in the direction 
opposite to that. of the displacement and acts to bring it back to its equilibrium 
position. A spring which behaves in this manner is said to obey Hooke's law. Hooke's 
law states that the restoring force (F) isproportional to tHs displacement (x) and acts in a 
direction oppositt! to the direction of the displacement. This can be represented 
mathematically as: 



The proportionality constant, k is called the force constant of the spring. The force 
constant k is a measure of the strcngth of the spring. Hence, a large value of k means a 
stronger and less flexible spring. From Eq. 4.1,it may be further noticed that for a 
given value ofx, a larger value of k will result into a larger restoring force. 

4.2.2 Equation of Motion 

It is experimentally observed that if the particle is displaced from its equilibrium 
position by a distance +xo (Fig. 4.lb) and the external force is withdrawn, the particle 
returns to the equilibrium position (Fig. 4.la) and then continues to move to a 
position, -xo, away from the equilibrium position (Fig. 4.1~). The state of the sprin,: 

in Fig. 4.1 (b) and 4.1 (c) corresponds to the stretched and the compressed states. 
respectively. And as mentioned above, if there is no frictional loss or gravitational i.:.'I 
the particle continues to move between these two extremes passing through the 
equilibrium position. If the value of the maximum displacements (also called 
amplitude) on the two extremes is denoted by -xo and +xo, then the value of the 
displacement (or amplitude) x after time t sec is given by a cosine function (Fig. 4.2) as 
shown below: 

where vosc is the oscillation frequency in sec-' . Equation 4.2 represents the equation sin,ilar to E ~ .  4.2, 

of motion of the particle. 

timc. r- 

Fit 4.2: A cosine functlon represents the equetlon of motion of the hermonlc oscillator. 

4.2.3 Expressions for Force Constant and Characteristic Frequency 

Now, the restoring force F in Eq. 4.1 can be represented in terms of Newton's second 
law of motion as: 

where a is the acceleration of motion which is denoted by second differential 

d2x ofx with respect to time, i.e. a = - This on combination with Eq. 4.1 gives 
d t2' 

Using Eq. 4.2 for x, we find 
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dr The results of Eqs. 4.4 and 4.5 on combination give - = - ~ ~ 2 n v , , s i n 2 n v ~ , r  
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2 2 From the above equation, we can get the expression for the force constant, k as 
= - 4 n  v,, xocos2nv,,, ,t  

and that for the oscillation frequency, vo, as 

Thus, for a given spring with force constant, k and a particle of mass, m there is only 
one oscillation frequency possible, v,, , which is independent of the maximum displace- 
ment of the particle. This is called characteristic frequency of the harmonic oscillator. 

4.2.4 Potential Energy Curve 

If Fat is the external force applied to displace the particle by a distance dr, the work 
done in doing so is stored as potential energy (P.E.), dV. Thus 

dV = F,, dr ...( 4.8) 

Note that work is given as 
~OIIOWE: 

Since the external force is equal and opposite of the restoringforce (4) exerted by 
wort = fonr distance the spring, we can write 

If equilibrium position is taken as that of zero potentialenergy,integration of above 
equation gives 

Since potential energy varies linearly with the square of the displacement, a plot of V 
vs. x gives a parabola as shown in Fig. 4.3. 

Flg. 4.3 Potential en- curve of (be bormonlc osclllpbr. 



Now let us imagine that the particle has been displaced by a distancexo and released. Vibrational Spectra 
of Dia toh ic  Molecules 

When it is displaced by a distancexo, at that point it has gained a potential energy of 

1 2  - kxo. After its release, say at a time t if the displacement isx, , then its potential 
2 

1 1 .  1 
energy will be - k x i  . The difference, - k x i  - - k x: represents the kinetic energy of the 

2 . . 2 2 
1 particle which is given by -mv2 where v is the velocity of the particle at a displacement 
2 

x,. Thus,one can determine the velocity of the particle at a displacementx, if one knows 
the values of m, k,xo andx,. 

Thus, 

Using v = - dx wecanwrite 
dt ' 

2 2  2 Total energy = k d  = 2 mn v,xo 
2 

4.2.5 Quantisation and Energy Levels 

As you have been introduced in Unit 2 of the "Atoms and Molecules" Course 
(CHE-Ol), the motion of a microscopic particle can be described in quantum 
mechanics by Scbrodinger's wave equation. Similarly, the motion of a harmonic 
oscillator, if the particle involved is microscopic in nature, can be discussed by solving 
Schrodinger wave equation. We shall not go into the details of the solution, however, 
we shall use the results obtained which are very interesting. 

The wave equation of this system is given as 

where tb is the wave function of the oscillator. h is Planck's constant and E is the total 
energy of the oscillator. The solution of this equation gives the energy, E as given You may remember from Unit 2 of 

'Atoms and Molecules' (CHE-01) 
below: course that Schddinper Equation - 

7 for a varticle in one - dimension 
h k 1 

E = -  ,,/; (V + 7) ...( 4.17) can be given as follows: 

&++(E-V)r-o 

where v is an integer and can take values 0, 1,2, ......... etc. and is known as vibrational a 2  h 

quantum number. n q f o r v = f k & r r g e t  

Using Eq. 4.7, we can write Eq.. 4.17 as given below: 

The expression for E given in Eq. 4.18 deserves some further analysis. It shows that E 
has different values for different values of v . Increasing v by one integer increases the 



IR nnd R n r n n ~ ~  Spectm value of E by a quantity hv,, where v,,, is the characteristic frequency of the 
oscillator. This shows that the energy of the oscillator cannot be changed at will but it 
can be only changed by a multiple of hv,,. This is referred to as quantisation of 
energy. By showing the values of E for varying values of v we can build up energy levels 
as shown in Fig. 4.4. 

- 

-cm-' 
Absorption of radiation 

FLg. 4.4: Energy levels of a harmonic oscillator. 

4.3 DIATOMIC MOLECULE AS HARMONIC 
OSCILLATOR 

Let us now consider two particles of masses ml and mz joined together by a spring 

having a force conitant k (Fig. 4.5a). The distance of separation between the particles 
is re. The spring can be stretched and compressed by pulling the two particles apart 
(Fig. 4.5b) or by pushing them to come closer (Fig. 4.5~). 

i - r1 a 
,a 
'i. 1 2  - 
j COM 
0 

Flg. 4.5: Strelchlng and compression of lwo partides Jolned togttber by a spring. 

Point 0 in Fig. 4.5 indicates the centre of mass and il and r2 denote distances of the 



particles 1 and 2, respectively, from the centre of mass 0. If the new distance of Vibrational Spectra 

separation of the two particles in Fig. 4.5 (b or c) is referred to as r, the displacement 
of Diatomic Molecules 

of ml with respect to m2 given by r - re (while keeping the centre of mass at 0 )  can be Note that the potential energy is 
employed in the equations of motion (similar to Eq. 4.4) as follows: proportional to the square of 

relative displacement of the 

m1& 
particle and is given by 

-- - -k(f - re) ... (4.19) v = - k ( r - r e ) 2  1 
d t2 2 

and 
and the restoring force is given as 

F = -k(r -re).  

Thus, the equations of motion for 
the two particles ml and mz are as 

."(4.20) given by Eqs 4.19 and 4.20, 
respectively. 

Since r = rl + r2 and mlrl = my2,  we get From kl rl = mz rz, we can write 

r1 = m2 r and r2 = 
"'1 + '7'2 

r 
"'1 + '7'2 - 

Using these expressions for rl and r2, Eqs. 4.19 and 4.20 reduce to 

... ( A )  

rnlrl and r = - ... (B) 
m2 

We can take out m2 and (ml + mi) out of differentiation because they are constant. 
m l m 2  

Thus, 
From rl + r2 = r, we can say that 

...( 4.22) 
r = r -  1 r2 

Using this value of rl in Eq. A 
Here ml m2/(ml + mi) can be denoted byp which is called the redueed mass. above, we get 

Thus, Eq. 4.22 can be rewritten as 

or 
m l r  

Since 
d2(r - re) d2r 

= - because r is a constant, we substitute 
d2(r-re) d2r .  

for - m (m2 + m l> = '2  

d ?  d ?  d t2 d ?  Similarly, from the Eq. B above, 
Eq. 4.24 for )laving similarity in the variable on the two sides of the equation. Thus, we can derive 

A comparison of Eqs. 4.4 and 4.25 shows that the two expressions are similar if m of 
Eq. 4.4 is identified with p of Eq. 4.25 andx of Eq. 4.4 is identified with r - re of Eq. 
4.25. This leads us to conclude that the oscillational motion for two particles joined 
together can be identified to the simple harmonic vibration of a particle of mass equal 
top and a displacement equal to r - re (called A r) in the above case. Going on similar 
analogy, therefore, we can write equations similar to Eqs. 4.2,4.6,4.7,4.11 and 4.12 for ' 

oscillations of the two particles joined by a spring viz. 
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1 
V =  -k(r - re) 2 

2 
... (4.29) 

1 - 
K.E. = ~p v- ... (4.30) 

where v,,, is the characteristic oscillational frequency of the system under 
consideration, and v = d (A r)/dr. 

The vibrations in diatomic molecule can be treated in a similar way. Instead of the 
spring with force constant k, we have in the case of diatomic molecules binding of the 
two nuclei through a bond with a force constant k and these nuclei oscillate with a 
zt:aracteristic oscillational frequency, vow ' 

Extending the similarity further the wave equation for oscillation in diatomic molecule 
can be given similar to Eq 4.16 viz. 

and the expression for energy similar to Eq. 4.17 can be given as 

4.3.1 Zero Point Energy 

Let us study the above equation more carefully. You will realise that even for v = 0, 
the energy E is not zero and the molecule oscillates with a definite value of frequency. 

1 
The energy at v = 0 is given by E,, = - h v,, and is referred to as zero point energy. 

2 
The zero point energy corresponds to the energy of the molecule in the vibrational 
ground state. 

4.3.2 Infrared Spectra and Selection Rules 

If infrared radiations are passed through a sample of diatomic molecules in the gas 
phase and the transmitted radiations are analysed through the monochromator and 
detector of a spectrometer (for details of working see -,Unit 9) an infrared spectrum is 
obtained. The infrared spectrum results from the ab'sorption of radiation causing 
transition from one energy level to another. The observed line position in the spectrum 
gives information about the difference between the energy levels. However, the 
intensity of the spectral lines gives irdornytion about the population of levels involved 
in the transition. The spectruni so obtamed is characteristic of the diatomic molecule 
under investigation. The spectrum is employed to get information about the vibrations 
of the molecule and interactions between the vibrational and rotational motions. 

The infrared spectral bands observed for HCl are shown schematically in Fig. 4.6. 
Notice a signal with a strong intensity followed by two more of weak intensity (Fig. 4.6 
a). The positions of the signals are given in terms of frequency of radiation absorbed, 

v (cm-'1. 

The frequency, v (sec-I) = c t (cm-I), where c is the velocity of light. 

Because of various broadening mechanisms as well as rotational fine .structure, these 
signals do not appear as single lines but appear as bands. Depending on the resolution 
of the equipment used, the bands show different type of features and fine structure as 
shown in Fig. 4.6 (c). We shall try to understand salient points of this spectrum in the 
following sections. 
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Internuclear distance 

6) (iii) 

Flg. 4.6 (a): Schematic representation of the posltiom and intensities of first tbrte ban& of HCI. 
The numbers in notation 0- 1,O-2 and 0-3 indicate the initial and final levels of 
each (ransltion. 

(b) A typlcal potenUa1 energy C U I - V ~  for a dlatomlc moltcole. The mlnlmum in thy cone 
re, corresponds to the equilibrium distance between the atoms. Horlwntnl llnes 
represent vibrational levels. Transitlolur shown by a, b and c art the fundpmentd, 
f i s t  overtone and second overtone, respectlvely. The devlaUon from equal spaclng 
between energy levels I s  due to anharmonicity, as you wlll study ln Stc 4.4. 

(c) Fundamental band of HCI under (I) low, (11) moderate and (Ill) hlgh resolutlom. 

As given in Fig. 4.4, the energy levels for diatomic molecules, when considered similar 
to those of harmonic oscillator, are equidistant with an energy gap equal to h v,, 

where v,,, is the vibrational frequency of the diatomic molecule in sec-' and h is 
Planck's constant. A promotion of the diatomic oscillator from a lower level to an 
upper level can take place if an external energy, equal to the energy gap between the 
two levels, is supplied. If the energy supplied is in the form of an electromagnetic 
radiation with frequency v sec-l, a transition will occur if E = E2 - El = h v where E2 
and El denote energies of the final and the initial levels. Note the difference between v 

and v,,, ; the former denotes the frequency of electromagnetic radiation whereas the 
latter denotes the oscillational frequency of the diatomic molecule. If the quantum 
numbers, v for final and initial levels are given by v, and v,, respectively', then 

An absorption of radiation takes place and the oscillator flips from energy level with 
quantum number vi to that with vf as shown in Fig. 4.7. The transitions'for which , 

A v = 1 are called fundamental transitions and those with Av = 2,3,4 etc. are called 
first, second, third etc. overtones respectively. 

Eq. 4.33 shows that afundamental transition takesplace ifthe frequency of 
electromagnetic radiation is equal to the oscillational frequency of the diatomic molecule: 
The overtone transitions take place i f  the frequency of electromagnetic radiation is an 
integral multiple of the oscillationirl frequency. 
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Fig. 4.7: Absorption of rndltlon and vlbratlond (ransltlon. 

As you have noticed in Eq. 4.33, the harmonic oscillator with different energy levels 
defined by different values of v, has different wave functions. As mentioned in the 
appendix of Unit 2, an electric dipolar transition from energy level v, to vfis only 

allowed in case the transition moment integral given below is non-zero, i.e. 

where. yl,. and yl,. are wave functions for vrand vi levels, d T, is volume element and M is 
J- I 

dipole mdnent operator. Without giving any further derivation, it can be stated that if 
dipole moment is a linear function of internuclear distance of the diatomic molecule, 
the above integral is nonzero only if Av = f 1 and if the dipole moment is a non linear 
function of internuclear distance, the above integial is nonzero for all integral values 
of Av. However, in practice only transitions with Av = f 1 are allowed for harmonic 
oscillator model of diatomic molecules where the dipole moment is known to be a 
linear function of the internuclear distance. The " + " sign for Av above refers to 
transitions from lower energy levels to higher levels whereas the "-" sign refers to 
transitions from higher energy levels to lower energy levels. The absorption of 
radiations thus corresponds to " + " sign and emission of radiations to "-" sign of the v 
values given above. Further, expansion of dipole moment operator M in Eq. 4.34 
shows that fundamental traniitions are allowed only if dpld(A r)is non zero, i.e. the 
vibration should be accompanied by a change in the dipole moment to show a 
fundamental transitibn. Thus, the homonuclear diatomic molecules do not show any 
absorption in the fundamental vibrational spectrum. These rules regarding which 
transitions are allowed and which are forbidden, are referred to as Selection Rules. 

Remember that according to the 
Boltman distribution, the number 
of molecules present in' the excited 
state (fi) are related to the 
number of molecules in the 
ground state (N1) by the following 
expression: 

Since the frequency of the electromagnetic radiation which satisfies the condition 
given in Eq. 4.33 falls in the infrared region, these transitions are referred to as 
infrared transitions and are observed in the infrared region of the spectrum. The 
intensity of the band corresponds to the amount of radiation absorbed and is related 
to the square of the transition moment integral (Eq. 4.34). The frequency at which the 
maximum absorption is observed corresponds to the frequency of electromagnetic 
radiation responsible for transition as defined by Eq. 4.33. According to the Boltzman 
distribution, the number of oscillators in v w 0 level are expected to be very small at 
room temperature; hence only transitions from v = 0- v = 1 are observed where 
the v0, for the oscillator is equal to the frequency of the electromagnetic radiation 
absorbed to give the fundamental transition. At higher temperatures v = 1 - v = 2 
etc. transitions may also be observed. Such transitions are referred to as hot 
transitions (or hot bands in the spectrum). 

4.3.3 Evaluation of Force Constant and Maximum Displacement 

As we have noticed above, the frequency of electromagnetic radiation at which ' 

absorption takes place can give the value of oscillational frequency of the diatomic 
molecule, e.g. for a transition vi = 0 to vr= 1. 



and if we know the reduced mass of the diatomic molecule, we can calculate the value Vibrational Spectra 

of force constant, k by using Eq. 4.27 and 4.28. Eqs. similar to 4.15 and 4.17 for 
of Diatomic Molecuies 

diatomic molecule can be employed to evaluate maximum displacement A  ro for 
various values of v as follows: 

1 Totalenergy = ?LAG = ~ P J ? V & , A ~  

giving Aro = 

SAQ 1 

HCl molecule shows an absorption at 2886 cm-l. Determine its force constant and 
maximum displacements (changes in internuclear distance) for v = 0,1,2,3. 

4.3.4 Isotope Effect 

We have noted above that the HCl molecule absorbs radiation of 2886 cm-I frequency. 
Let us see what changes we expect in the infrared spectrum, if HC1 is changed to DCI. 
This brings change in the reduced mass, i.e. 

Thus, we can say that 

PDCI ~ P H C I  

The force constant is a property of the bond which in turn depends on the number of 
electrons in H and D. Since number of electrons in H and D h e  equal it is assumed 
that to a good degree of approximation that the force constant for HCI and DCl are 
equal. 

Using the above argument in Eq. 4.28, we can conclude that 

Thus, 

.m 
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In gcri . al, we can say that 

. f r  ere vi and pi denote the 
frequency and the reduced mass 
for the isotopically substituted 
molecule. 

And since the fundamental transition takes place with electromagnetic radiation of 
frequency equal to oscillational frequency, we can write that 

Thus,when HCl is changed to DCl, the fundamental transition in infrared spectrum is 
observed at a lower frequency of electromagnetic radiation than that for HCl and the 
ratio between these frequencies is given by Eq. 4.40. 

SAQ 2 

If the fundamental transition for 0-H species is observed at 3735 cml ,  find out the 
position of the corresponding transition for 0-D species. 

SAQ 3 

Calculate the ratio between the zero point energies of HCl and DCl. 

........................................................................................................................................................... 

4.3.5 Vibrational Term Value 

Eqs. 4.28 and 432 give expression for energy of diatomic oscillator as follows: 

If we divide both sides of Eq 4.41 by hc, we get 

The term E/hc is referred to as the term value G(v) and the term voJc, the harmonic 

frequency Yo, . Both G(v) and Vmc have the units of wave number i.e. cm-', thus giving 
the new expression for energy of the vibrational levels in term values as follows. 

This is a convenient expression for equating the frequency of the oscillator, Po, with 
the frequency of the electromagnetic radiation absorbed for fundamental transition of 
the harmonic oscillator, P as given below: 

For 

and for 

Thus, 

It may be further noted that Eq. 4.44 represents the zero point- energy in cm-' 
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4.4 ANHARMONICITY 

As was shown in Fig. 4.3, the potential energy curve of a harmonic oscillator is a 
parabola. Increase of displacement xo continuously shows an increase in the energy. In 
a diatomic molecule where change in the internuclear distance, A ro is equated to the 
displacement, xo of harmonic oscillator, it is not realistically possible to expect higher 
and higher potential energy with:increasing value of A ro since after a certain'increase 
in bond distance, dissociation takes place and the molecule breaks into the.constituent 
atoms. The true variation of the potential energy with internuclear distance and the 
potential energy function for harmonic oscillator model of diatomic molecule are Also note that in an anhannonic 
shown in Fig. 4.8. 

Parabola oscillator, the energy levels are not 
equally spaced in contrast to the 
case of a harmonic oscillator shown 
in Fig. 4.4. 

(anharmonic curve of 
the diatomic molecule) 

I 
1, 

Internuclear distance - 
Figure 4.8 : The variation of potential energy with Internuclear dlstance for a dlatomlc molecde 

is shown by solld Ilne. The potential energy function for a harmonic oscillator h 
shown by broken Ilne. 

The deviation from harmonic oscillator behaviour is termed as anharmonicity. Note 
that the minimum in the curve occurs at re, the equilibrium internuclear distance. You 
can also see that in the vicinity of re, the curve very closely approximates the harmonic 
oscillator. However, at larger internuclear separation, the anharmonic curve shows 
significant deviation from the harmonic curve. 

You will now study about the Morse Potential function which gives a better agreement 
with the real curve. 

4.4.1 Morse Potential 

A mathematical equation for expressing the potential energy of diatomic molecule was 
given by P.M. Morse and is called Morse potential. This can be written as follows. 

Unlike a parabola, Mom c u m  
where A r = r - re, De is dissociation energy of the molecule measured from the allows for diuodation at high 

minhum of the curve and /3 a constant is given by energy. 

The dissociation energy, D, 
measured at the minimum of the 

... (4.48) P.E c u m  is called the 
equitibrhm dirrocirrtion energy. 
However. the sprcm9oopic 
dirrociaribn a&, Eenergy of 

where n, c, h have their usual meaning and p, De and v,, are respectively the reduced the vibmtional 
mass, dissociation energy and oscillational frequency. (v = o).'~NIs, 

1 Do = D , - r h ~ ,  

4.4.2 Energy Levels of Anharmonic Oscillator and Selection Rules 

Since in our analysis of IR transitions, we are mainly concerned with bond distance 17 
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Maclaurian  rice is givcn as 
follow . , 

Noh that Xin Eq.!45O a iE equal to 
%sex. in Eq. 450 b. 

Effect of anhannonicity on the 
vibrational energy levels of a 
diatomic molecule. 

6 

near th& equilibrium value, re, therefore, instead of using Morse potential, the 
Maclaurian series expansion of potential energy is used for inclusion of anharmonicity 
in the oscillator as follows: 

If we include higher terms like t k 3  (A r)3 etc. in the potential energy expression, the 

oscillator is referred to as anharmonic oscillator and such additional terms are 
referred to as anharmonicity terms of potential energy expression. Inclusion of 
anharmonicity terms leads to an improved version of energy levels, transition energies 
and selection rules. 

The vibrational energy levels of the anharmonic oscillator can be expressed as 

X and Yare functions of constants k2, k3 etc. of Eq. 4.49 and are referred to as 
anharmonicity constants. Usually the expression is turncated after two terms as Y is 
far lesser in value thanX. However, the equation of motion obtained by using a cubic 
potential energy function is not easy to handle. One approximate solution to the 
Schrodinger equation that may be formed expresses the energy in terms 
of the fundamental vibrational frequency, v,, and anharmonicity constant 
xe, as follows. 

Even with a linear dipole moment function, the anharmmic wave fuictions yield 
selection rules A v = f 1 , +-2,+3 etc.! thus overtone bands get allowed due to 
anharmonicity. The intensities of the overtone bands are, however, quite small in 
comparison to the intensity of the fundamental band (Fig. 4.6 a). Due to added terms 
in the energy expression (Eq. 4.50), the energy levels are no more equidistant and they 
are found to converge. 

Thus, the anharmonic correction reduces the energy of every level. The reduction is 
greater for the higher energy levels. Thus, the spacing between the energy levels, 
E(,, + - Ev , gets smaller as v gets larger. This was shown in Fig. 4.8 and the extent of 
reduction is shown in the margin. 

4.4.3 Evaluation of Anharmonicity Constants 

The term values G (v) for v = 0,1,2,3 for anharmonic oscillator are given below: 

1 1 1  Go=-Few--X+-Y 
2 4 8 

... (4.51) 

3, 9 27 GI =-v0,--X+-Y 
2 4 8 

... (4.52) 

5 -  25 125 G2 = - v , - - X + Y  
2 4 8 

... (4.53) 

7, 49 343 G3 = -V~,,--X + Y 
2 4 8 

... (4.54) 



The energies of radiation in cm-' for fundamental, first and second overtones can be 
given as 

Thus, by knowing the frequencies of electromagnetic radiation absorbed for 
fundamental and overtone transitions, one can evaluate the oscillational frequency and 
anharmonicity constants. 

Also, the equilibrium dissociation energy, D, of a molecule can be calculated from its 
spectroscopic dissociation energy, Do by using the following relation: 

4.5 THE VJBRATING ROTATOR 

In Unit 3, the pure rotations of diatomic molecules have been discussed and in the 
preceding sections of this unit we have discussed pure vibrations of diatomic molecule. 
The two motions have been discussed independent of each other. In reality, of course, 
the rotational andxibrational motions take place simultaneously. In this section, we 
now-see how the spectrum gets modzed because of this mixing. 

4.5.1 Energy Levels 

The total energy is given as a sum of the rotational and vibrational energies defined by 
the quantum numbers v and J. 

forv = 0,1,2 ... a n d J =  0,1,2 ... etc. 

where Eq. 4.59 represents rotational vibrational energy for harmonic oscillator and 
rigid rotator whereas Eq. 4.60 represents the rotational vibrational energy for 
anharmonic oscillator and nonrigid rotator. 

4.5.2 The IR Spectra and P,Q,R Branches 

The selection rules for transitions in vibrating rotator are same as given for rotations 
and vibrations of diatomic molecules (Unit 3 and Sec.4.3.2) which state A v = 21 and 
A J = 21. Thus, for a fundamental vibrational transition A v = +1, we shall have a 
series of transitions where A J = +1 and another series where A J = -1. The series 
with A v = +l and A J = +1 defines the transitions (00)- (ll), (01) - (12), (02) -. 
(13), (03) -. (14), ... etc; whereas the series with A v = +l and A J = -1 defines the 
transitions (01) 4 (lo), (02) - (1 I), (03) - (12), (04) - (13) etc. Here, the fust 
number in the parenthesis denotes vibrational quantum number (v) and the second 



IR and Rnrnon Spectrn number corresponds to the rotational quantum number (4. The transitions described 
above are shown in Fig. 4.9. 

AI = + 1 (R branch) AI = -1 (P branch) 
, Aw==SYI AwsSY1 

Fie  4.9: The aeries of transitions 4 t h  A v = + 1 and A J 2 I. 

For the vibrational transition A v = + 1, the series of transitions with A I  = -1 is called 
P branch and the series of transitions with A J = + 1 is called R branch. For harmonic 
oscillator and rigid rotator model 

AEV,, = Evl , j ,  -Evt, J, ,  

= h vo, (v' - v") + Bhc [I' (J' + 1) -J1' (I" + I ) ]  ... (4.61) 

For v' = 1 and v" = 0,  the R branch is represented by J ' = J " + 1 and P branch is 
represented by J ' = J " -1. The energy expressions for the two branches are given 
below and they are shown schematically in Fig. 4.10. 

and A Ev , = h vow - 2 Bhd", P branch 

where J" = 1 ,2 ,3  ... 
R b&h P branch - * 

I 

Fig. 4.10: P and R branches showing energies of transitlo& with varying J " values. 



Since A J = 0 is not allowed, the transition with A Ev, = h v,, is not observed uader 
these conditions. This is referred to as Q branch. The infrared spectrum of a diatomic 
molecule with this model will have two rotational vibrational bands with a dip in the 
centre corresponding to A J = 0 as shown in Fig. 4.11. In working out the expressions 
for AE;, given by Eqs. 4.62 and 4.63, it is assumed that the diatomic molecule 
behaves like a rigid rotator and harmonic oscillator and also that the rotational 
constant B does not vary with the vibrational quantum number. In practice, however, 
these assumptions are not true and the expressions get slightly modified when these 
assumptions are taken into consideration. 

Vibrational Spectra 
of Diatomic Molecules 

- 
0, cm4- 
low resdution 

- 
U, cm4- 
high resolution 

Fb 4.11: The vlbra!loml mt.Uond lnf'rared spectrum 01. dlatomtc molrde  wlth rigid 
rotator oed hannonlc oscillator model. 

4.5.3 Symmetric Top Vibrating Rotator Model 

As mentioned in Unit 3, a diatomic molecule can be considered as linear rotator if 
mass of electrons is ignored. The moment of inertia in the direction of the internuclear 
axis is zero and the moments of inertia in the other two directions (x, y) perpendicular 
to this axis are equal and nonzero. In case the mass of the electrons is also considered. 
the moment of inertia in the z-direction is small but finite and therefore, I, = I,, > > I,. 
This is referred to a symmetric top model. The selection rules under these conditions 
for vibrational-rotational transitions get modified as Av = +I and A J = 0,  21. The 
molecules belonging to this category thus will have all the three (P, Q;R) branches 
allowed and the infrared spectrum has a central branch (Q) surrounded by two 
branches P and R on the low and high energy side of the Q branch. It is fouad that for 
HCl molecule only P and R branches are observed in the vibrational rotational . 
infrared spectrum whereas for NO molecule, all the three branches are observed. 
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See Fig. 4.6 carefully now and note down the various features of the infrared spectrum 
you can explain. 

4.6 SUMMARY 

In this unit, you have learnt the properties of the motion of a single particle joined by 
a spring fixed to a rigid wall. The motion follows Hooke's lawwhich states that the 
restoring force is proportional to the displacement and acts in a direction opposite to 
the direction of the displacement. The displacement of the partick follows simple 
harmonic motion and is represented by a cosine function of time, t and characteristic 
frequency v,. The expressions for the Hooke's law, Newton's second law of motion 
and simple harmonic motion are combined to obtain relationship between the 
oscillational frequency v,, and force constant of the spring, k (Eq. 4.7). The variation 
of the potential energy of the motion of the particle with the displacement is shown by 
a parabola. Expressions for the potential energy, kinetic energy and the total energy of 
the particle at a displacement x are then derived on the basis of the parabolic variation 
of the potential energy. It was shown how the use of Schrodinger wave equation for 
harmonic oscillator gives expression for energy of the motion which is quantised giving 

... various energy levels with different values of quantum number v = 0,1,2,3 etc. It is 
observed that the energy levels ar equidistant with a consecutive gap of h v,,. The B 
motion of two particles joined by a spring was then dealt with. The mathematical 
derivation showed that the motion is equivalent to that of a harmonic oscillator 
mentioned above such that its displacement is equal to the change in internuclear 
distance and its mass is equal to the reduced mass of the two particles. The vibrations 
of the diatomic molecule were treated in a way similar to the vibrations of two 
particles joined by a spring, the internuclear bond made through the sharing of 
electrons replaces the spring. Energy levels and other expressions similar to those . 
obtained for harmonic oscillator were used for studying the vibration of diatomic 
molecule. 

Absorption of radiation in the infrared region led to transition of the diatomic 
oscillator from ground state energy level with (v = 0) to excited state. The frequency 
of the electromagnetic radiation at which absorption takes place is characteristic of 
the molecule, and is also equal to the frequency of oscillation of the diatomic 
harmonic oscillator. The selection rules for the vibrational transition shows that only 
transitions with A v = +1 are allowed. Also such transitions are allowed if there is a 
change in the dipole moment during the vibration. These rules restrict such transitions 
to be possible only for heteronuclear diatomic molecules from v = 0 to 
v = 1 levels. Due to Boltman's distribution, population in v > 0 is found to be very 
small at room temperature for most of the common diatomic molecules; therefore, 
transitions for v = 1 to v = 2 etc. are not observed. Evaluation of force constant and 
maximum displacement, effect of isotopic substitution on oscillational frequency and 
expression for zero point energy were discussed. 

The observed behaviour of diatomic molecules regarding their dissociation at higher 
internuclear distances is introduced in the form of anharmonicity in the potential 
energy expression. This led to some correction in the quantum mechanical energy 
leading to a convergence in energy levels. Selection rules allow the observation of 
overtones in the absorption spectrum of anharmonic oscillator which can be employed 
to evaluate anharmonicity constants. The last section on vibrating rotator showed that 



simultaneous existance of vibrations and rotations in the diatomic molecules leads to Vibrational Spectra 

observation of fine structure in the absorption bands of IR spectra in terms of P, Q, R of Diatomic Moiecules 

branches. 

4.7 TERMINAL QUESTIONS 

1. What is the energy difference between energy levels of a harmonic oscillator? 

2. Define zero point energy. 

3. What are the selection rules for 

(i) a harmonic oscillator to show vibrational spectrum and 
(ii) an anharmonic oscillator to show vibrational spectrum ? 

4. Calculate De for H:, if Do = 21374.9 cm-' 

v,, = 2321.7 cm-' 

v,,xe = 66.2 cm-' 

vMCye := 0.6 6' 

4.8 ANSWERS 

Self Assessment Questions 

1. p = 1.627 x 10-~ 'k~ 

Given u = 2886 cm-I. To get u osc from it, we have to multiply it by the velocity 
of light, c. 

A ro = 1.08 x I .87 x 2.42 x ,2.86 x for v = 0, l ,2 ,  3, 
respectively. 

2. 0 -D=2718cm- '  

By using rno = 15.9949 x kg 

r n ~  = 1.007825 x 1 o - ~  kg 

r n ~  = 2.014101 x kg 

and then calculating p and using Eq. 4.39. 

3. Eo HCIIEo DCI = fi  

4. Fundamental, I and I1 overtones at 2886,5668 and 8346 cm-' 

- i (i) Overtones are weaker than fundamentals. 

(ii) Harmonic oscillators - only fundamental transitions are allowed, (A v = d). 
Anharmonic oscillators - fundamental and overtones are allowed, 

. (A v = 0, 1,2,  etc). 



I Terminal Questions 

I 

1. hv,, 

2. The energy of the molecule at v = 0, i.e. at vibrational ground leve'l is 
called zero point energy. . . 

3. A v = &1 for harmonic oscillator 

A v = f 1, f 2, &3 etc. for an anharmonic oscillator. 

4. - 22,540 cm-'. 

IR nnd Rnmnn Spectm 
(iii) At high resolution, rotational fine structure shows P and R branches and 

a dip is observed in the place of Q branch since transitions with A J = 0 
are not allowed. 


