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3.1 INTRODUCTION

From this unit onwards we shall study the interaction of electromagnetic radiation with
an assembly of molecules rather than atoms, as has been done in the first unit of this
Block. This interaction will result in the so called molecular spectra of compounds.
Just like we extracted information about the structure of atoms from the atomic
spectra, we shall try to find out what information can be obtained from the molecular
spectrum regarding the structure and the behaviour of a molecule.

It will be seen that absorption or emission of electromagnetic radiation in different
regions, corresponding to different amounts of energy, would cause various types of
changes in the molecule. Thus, the spectra in each region would give a definite and
specific piece of information about the molecule. For instance, when the molecule is
subjected 10 radiations in the microwave region, we get information about the
rotational properties of the molecule which in turn gives the values of molecular
parameters like bond length.

On the other hand, molecular spectrum in the infrared region is related to the
vibrational properties of the molecule. About vibrational spectra, you will study in
Units 4 and 5 of Block 2. Since each region of spectrum requires a separate source of
characteristic radiation, sample preparation and recording technique, you will study
about them separately in Unit 9 of Block 3.

In this unit, we will start our discussion with the concept of motion leading to the idea
of moment of inertia associated with a rotating body. On the basis of the moment of
incrtia, molecules will be ¢lassified as Linear. symmetric top, asymmetric top and

spherical top molecules. We will then explain the rotational spectra of rigid linear
molecules in detail. We will also see what happens when a molecule is not rigid? We
will explain briefly the rotational spectra of simple polyatomic molecules and intensity
of spectral lines.

Objectives
After studying this unit, you should be able to:

e define the moment of inertia,

e discuss the rotational spectra of rigid linear diatomic and triatomic molecules,

e give applications of study of rotational spectra,
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* A molecule can store energy by
way of molecular motions.

e explain the effect of isotopic substitution and non-rigidity on the rotational
spectra of a molecule,

classify various molecules according to their values of moment of inertia,
® discuss the rotational spectra of simple polyatomic molecules, and

e relate the intensity of spectral lines with the population of a rotational level.

3.2 MOLECULAR MOTION AND ENERGY

The understanding of molecular motions help in the interpretation of molecular
spectra. When we talk about molecular motions, there are various possibilities. When
we want to specify the position of a body in space, we have to specify the number of
degrees of freedom it possesses. The number of degrees of freedom is related to the
number of independent coordinates required to specify the position of the body in
space. Foi example, for a single particle we need three Cartesian coordinatesx, y and z
to specify its position. Hence, it is said to have three degrees of freedom. Thus, for a
molecule having N atoms, the total number of degrees of freedom is 3N .

For a single particle, only one type of motion is possible which is called translational
motion. Hence, we can say that a single particle possesses three degrees of
translational freedom. ~

But what about translational motion of molecules? A molecule contains two or more
than two atoms. Since the atoms in a molecule are joined together, the molecule as a
wholc will show translatory motion and the atoms will not move independently. The
translational motion of a molecule can be described in terms of the centre of mass.
The centre of mass is the point where the whole mass can be considered to be
concentrated. Thus, we can specify three coordinates for the centre of mass and say
that it has three degrees of freedom, similar to a single particle. The translational
motion of centre of mass of a molecule (non-linear) is shown in Fig. 3.1. '

Fig. 3.1: Translational motion of centre of mass of a nonlinear molecule.

For a polyatomic molecule having N atoms, (3N — 3) degrees of freedom still remain.
These can be attributed to internal motions such as rotation and vibrations.

Let us now know more about rotational motion. The simplest case of rotation is that of
a particle about a fixed point, as shown in Fig. 3.2.




Fig. 3.2: Rotation of a particle about a fixed point.

The rotational kinetic energy of this particle having mass m

and velocity v can be
expressed as ‘ :

-~ (3.1)

1
E = -mf =

2 . .
> Ep_ where p = mv is the momentum of the particle

m

The velocity of this particle could be expressed as the distance travelled by it divided
by the time taken. For one revolution, we can say that

, = distance _ Jrr
time t

. (3.2)
where ¢ is the time taken for one revolution and is also known as period.

1

lso ‘ frequency (j)_

. (3.3)
Substituting the value of ¢ from Eq. 3.3 inio Eq.3.2, we get
v =2mrf - (3.4)

Replacing v in Eq. 3.1 by its valuz from Eq.3.4, we can write

E, =1m @urf . (3.5)
2
The terms in the above equation can be rearranged as given below:
E = 3m? @n)) . (36)

The quantity m?* of the above eq.ation is called the moment of inertia and is
represented by /. The term 2 zf is known as the angular velocity and is denoted by w.

Thus, we can rewrite Eq.3.6 as

2
Ey = 1720w v @7
On comparing Egs.3.1 and 3.7, wc can say that in the equation for rotational motion
(i.e., Eq. 3.7), moment of inertia is the equivalent of mass as used in Bq. 3.1. Also in_
Eq.3.7, angular velocity (@) is used in place of linear velocity (v) used in Eq.3.1.
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Let us now apply the above ideas to the rotation of a diatomic molecule. We will first
assume that this diatomic molecule is a rigid body. This means that the distance
between the atoms, i.e. the bond length does not change during the rotation. In other

Rotational Spectra

For circular motion if a particle P
traverces an angle A 8 in time As,
the arc PQ represcated as Asis
given by the following relation:

r.A0=As

Dividing by A7 on both the sides,
we get

or ro=y

where @ is the angular velocity
and v is the linear velocity. The,’
angular velocity, @ is defined as
the number of radians of angle
swept in unit time.

It is given by %tg' where d4 is the

angle traversed in df time. It is
expressed in terms of radians sex!
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Note that the axis about
which the rotation takes
place, is perpendicular to the
axis of symmetry of the
molecule.
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words, vibrational movement is not taking place during rotation. We are also assuming

that the centre of mass of the molecule is fixed. Hence, there is no translational motion

of the molecule. No real molecule can be called an ideally rigid body. But many molecules
may be considered as rigid because their vibrational motion is small. Let us now focus our
attention on Fig. 3.3 which depicts the rotation of a rigid diatomic molecule.

4 __ axis of rotation
m; CM m,
. T}
— _‘I"' r; r,
r ]
symmetry
(a) (b)

Fig. 3.3:(a) A rigid diatomic molecule.
(b) Rotation of a rigid diatomic molecule.

When such a molecule rotates, it rotates about an axis passing through its centre of
mass(('M). The centre of mass is shown by the point O. For such a system,the centre of
mass is such a point for which the following condition is satisfied:

ml rl = m2"2 aee (3.8)

We can rearrange Eq. 3.8 as follows

rn o m
1_72 ’ .. (3.9)
g ny

Using the characteristics of proportions, Eq.3.9 can be written as

"1 mZ
b .. (3.10
(ntr) (m+my) (3.10)
my (ry + 1y
or I et .. (311

P (my+my) @1

We also know that the bond length or the distance between twoatoms. r,is equal to the
sum of r, and r,. Thus, we can write

r= "1 + "2 eon (3.12)
Substituting r = r, + r, from Eq. 3.12 into Eq.3.11, we get

m
rn=ss———".r . (3.13
L7 (my+my) G1)
On similar lines, we can get
m
= (my + my) T - @1
by starting from Eq.3.8 and rearranging it as
n.m :
’ll — ;'-2' von (3.15)
Why do not you try Terminal Question 1 and check it.
Let us now write the energy of this system using Eq.3.7.
E, =1/21w? . (3.7)




You can imagine this molecule a: a two particle system (Compare Figs. 3.2 and 3.3). Rotational Spectra

Here, you can see that two particles (atoms having masses m, and m,) are rotating
. ) . 3 . Note that the moment of inertia for
about the point o. Thus, the rotational kinetic energy, E, of this system will be the sum ;. e oo i

of the E, values of both the particles. So, we can write 1= m¢* and for a diatomic molecule

CORlieas s STeia ) 1 s Capies G
| asl= mlrf +m, r§ We can extend

3 I )
E =—=mr w- + —m_ i w . (3.16) this argument and generalise it for
T 272 e A :
- - polyatomic molecules as follows.
‘The angular velocities of the two masses m, and m, will be equal because of the For a polyatomic molecule, the

2 moment of inertia about a particula

rigidity of the molecule. Hence, axis is given by the sum of moments
i due to various nuclei about that axis

2
.

LR

W, = w, (3.17) ie,I= ?miri2 where 7; is the

pcrpendicular distance of the

Let this angular velocity be w. So, we can rewrite Eq.3.16 as nucleus of mass 7, from the axis.

=1 2,1 2
Ek—-z-mlr%w +§m2r%w

N =

(m, rf + mzrzg w?= ]5/ w? .. (3.18)

where I is the moment of inertia of the diatomic molecule.

The terms ; and r, can be eliminated from Eq. 3.18 by using the values of ; and r,
from Eqs. 3.13 and 3.14, respectively, as given below:

- 2 2
1 myr myr 2
= - — + —_—
Ex=3|™ m,+m,| e’ my +m,
( ‘s 2 i
1 my ., '2 mymy I'2 2 ‘
(my +iny) (my + my) ~
1 ™My "2 2
B [m2 + ml] w
2 (m; +my) -
Remember that we have earlier ':x
1 ,7,1 mz f" wz defined Iasmrz.
=-——° . (3.19)
2.(my +my)
Comparing Eq. 3.19 with Eq. 3.18 , we can say that
2
1 ml mz I’2 W 1 2 ’
=31 —= «.(3.20
=y ey 200 (3.20)
mm, i
Thus, I=-—"——r" .. (3.21)
(m, + my
m; m, L : :
Here, —————— can be denoted by # which is known as the reduced mass. !
(m, +m,) ‘&
0
Thus, we can write
I=u ’,2 : - eoe (3.22)

n
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‘Do nof confuse the L used in Eq.
3.24 with that used in unit 1. Here,
L represents the angular
momentum of the molecule
undergoing end to end rotation
about the centre of mass wher:as
in unit 1, it was used to denote the
angular momentum of the
electran in‘an atom.

The restriction on the value of J
comes from quantum mechanics.

h
We have used fi=—in Eq3.27.
27
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Thus, the idea of using reduced mass is to mathematically simplify the rotation of a twoparticle
system into that of a one—particle problem. In other words, we have replaced the two
miasses m, and m, by a single mass 4. You must have also realised that similarly we

have also replaced the two distances r; and r, by .

At this stage, we have come to a point where we can deal with the rotation of a
diatomic molecule having masses m; and m, in terms of the rotation of a single

particle of mass 4 having a distance r from the origin.

Let us now reconsider Eq.3.18 which says

E, =-Iw?

k

(ST

This equatioﬁ isalright as per tfic classical mechanics approach. But when we apply

quantum mechanical approach to the molecule, certain restrictions appear on the

rotational energy.

Eq. 3.18 can be expressed in terms of angular momentum L which can be defined as
L=Iw ‘ ' - (3.23)

Substituting L for 7 w in Eq.3.18, we get

2
£ . (324)

(SIE

E =

Since the angular momentum is quantlscd it can be expressed in tcrms of the
rotational quantum number, J, as gwcn below:

L=_\/J(J+1) .EI-=VJ(J+1)ﬁ | - .. (325)

where J can take values 0, 1, 2, 3...

Substituting the above value of L in Eq.3.24, we get

1

_1 Ju+p? _Jg+ k2 |
E = 7" 7 o 27 W (3.26)
The above equation gives the rotational energy of a molecule. Thc energy can also be
expressed in terms of wave number, v. The energies as expressed in terms of ¥ are

referred to as term values and are denoted by F (J ). The SI unit of a term value is m™!

but they are usually expressed in cm'l.

Ey _JUg+nr_JU+Dh

Thus, v=F{J)= T = 87:21 P o 1o - (3.27)
The term 87:;10 can be represeﬁted by a constant B which is known as rotat_lopal .
constant. Hence, Eq.3.27 can be written as
v=BIJ+1)
Thus, when J =1 v=2Bc¢
J=2 v=6Bcm
J=3 v=12Bcm

‘and so on.




The correspondmg energy levels are depicted in Fig. 3.4 Rotatlonal Spectra

J ) VJ
6 42B
5 308
4 20B
3 12B
2 6B
1 2B
0 0

Fig. 3.4: Rotational levels of a rigid diatomic molecule.

But we are more interested in knowing the difference between these energy levels so
that we can know the radiation of what frequency or wavenumber is absorbed or
emitted when a molecule changes from one rotational level to the other. Thus, we can
- write the difference between two rotational levels_as follows.
ANE=E -E where J' is the final rotational level and ./
T is the initial rotational level,
I+ Tg+D R
- aq 27

2
=Ly +n-so+n . (328)
The ¥ for the above energy change can be given as follows: i
Vi = B+ D =S+ )] - (329)

‘From Flg 3.4, we can see that the energy difference between the successive energy
levels is 2B, 4B 6B, 8B, 10B and so on. The spectral lines originating from these
transitions will appear as shown in Fig. 3.5.

V Energy
3 308
AE=10B
4 208
Rotational i
lw:E AE’"?
3 : — 128

Specmlm{
28 4B 6B 8B 108

— et

Fig. 3.5: The transitions between the various rotational levels and spectral lines arising
from these transitions.




ls!aslc Concepts and Rotational  If you carefully see Fig. 3.5, we will notice that these spectral lines are equally spaced
pectra and there is a constant difference of 2B between the successive lines.

For a molecule to show rotational spectrum, the following requirements should be met.

i) ‘The first condition which a molecule should satisfy for showing rotational
. spectra is that it should possess a permanent dipole moment. This is because a
rotating dipole produces an oscillating electric field which interacts with the
oscillating field of the radiation.

ii)  There is a further restriction on rotational transitions for molecules having
permanent dipole moment. The selection rule for linear molecule is AJ = + 1,
So transitions could be from rotational levels havingJ = 0 »J = 1;
J=1-2J=2,J=2->J=3;J=3->J =4 and so on and in the reverse order
also.

Another factor which governs the intensity of rotational lines is the population of the
initial or ground state. You will study about this in Sec. 3.7.

The Condition for the Occurrence of Pure Rotation Spectra

In the Appendix of Unit 2, we have mentioned the applications of character tables.
One of the applications lies in determining whether a spectral transition could
occur from an energy state a to the energy state b. For such a transition to occur, at
least one of the components of the transition dipole moment, x«, which is equal to
J v, My, must have a non-zero value. You may be aware that y, and y, refer to
the wave functions of the energy states, b and a, whereas M is the dipole moment
operator. In case of pure rotation spectra, it means that at least one of the three
components of transition dipole moment, x4, %, or 4, inx, y and z directions must
have a non zero value in order that the molecule absorbs in the microwave region.
Ky iy and p, are related to My, M, and M, which are the components of the dipole

moment operator M as given below:

b= [P M p, dr . (A1)
u=J ¥, My, dv - (A2)
= [y, My, dv .. (A.3)

Note that p (bold type}) stands
for transition dipole moment

Also M,, M, and M, are related to the permanent dipole moment , 4, of a rotor and

whereas # (Roman type) refers
to the permanent dipole the polar coordinates, 6 and ¢ , as per Eqs. A.4 to A.6. For understanding the
moment. Also 4, 4y andu, are resolution of the dipole moment operator M in terms of M,, M, and M, as per
;‘;e o “::;zﬁisizit;a:ﬂ::“  Egs. A4 to A6 and Fig. A.1, you are advised to go through Eq. 2.54 of Unit 2 of
dil::cﬁons. ' CHE-01 (‘Atoms and Molecules’ Course) where the relationship between the
spherical polar coordinates and the cartesian coordinates is given.

M, =usinf cos¢ : (A9

M,=p sin @ sin ¢ .. (A5)

M, = pucos@ .. (A.6)

If a molecule lacks permanent dipole moment (i.c., 4 = 0), then M,, M, and M, and
hence, u,, 4, and 4, are zero as per Eqs. A.1to A.6. For a molecule having zero dipole

moment, all the three components of transition dipole moment are thus equal to zero. .

Asa result of this, amolecule with zero dipole moment cannot give rise to pure

rotation spectra. In othér words, for a molecule to absorb in the microwave region,

it must have permanent dipole moment. Insub-Sec. 2.10, of the last unit, we have

mentioned that only molecules belonging to the groups C,; (C; and C,) and

Fig. A.1: Transformation of Cu (Czr, Gy, ....C.) and Cs may have permanent dipole moment. Now you can
carteslan to spherical understand as to why HBr, CO and OCS (all of C,, point group) can exhibit pure

poiar coordinates.
rotation spectra but H, and CO, of D, point group) cannot.




SAQ 1

What is the effect of decrease in the moment of inertia on the energy of the rotational
level? - N

SAQ 2

What is the necessary condition for a molecule to show rotational spectrum?

3.4 APPLICATIONS OF STUDY OF ROTATIONAL
SPECTRA - ‘ '

(i) Determination of moment of inertia and bond length

From the last section, you know about the relationship between the energy (or
wavenumber) of radiation absorbed or emitted, required for the change of rotational
level and the moment of inertia. You can now think of the reverse process of what we
have learnt above. If we determine the frequency of radiation absorbed or emitted

. required'for the change of a particular rotational level, we can relate it to the value of
B, the rotational constant. Once B is determined, we can calculate the moment of

. . . . - _h

inertia using the expression B = -

8 Ic

can be used to give the value of , the bond length if we know the reduced mass of the
system. One such example is illustrated below:

. The value of moment of inertia so obtained

Thé transition fromJ = 0 toJ " = 1 for HCI takes place at ¥ = 21.18 cm™L. What is the
bond length of "H*C1?

Let us follow the steps we have listed above.

Vymows =1 =2118cm™

Thus, v=2Bcm' (fromEq.3.29)

_v_2118_ 3
So, B = > = = 10.59 cm

= 10.59 x 10* m™
Also, I= h_
Bc
6.626 x 107% Js
So, I= ; 2 1 8 -1
8 X (3.14)2 x 10.59 x 10> m™ x 2.998 x 10°m s

= 0.2646 X 1076 kg m?

Now I=pu I

To know r, from the above equation, we have to first calculate x4 as shown below:

Rotational Spectra

The value of rotational constant, B

.of some molecules as obtained

from their rotational spectrum is

given below:

Molecule B/em™
cO 1.93128
HF 20.90
HBr 8.4648
HCl 10.59
HI 6.426
KCl 0.1286
NaCl 0.2180
NO 1.70

5
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- mgy.my
mey +mH

_ (35.45) (1.008) 1073
"~ (3545 +1.008) ~ 6,022 x 108

=1.627 % 10 kg

Thus,

T~

0.2646 X 10~*6 kg m?
1627 % 10 kg

) ‘/0.2646x10_46 m*

2=
A=

1.627x10"%7

=1275%10%m
r=1275pm

(ii) Another application of the study of rotational spectra is in the determination of the
mass of a particular isotope or isotopic abundance of a particular isotope.

You know that isotopes differ from each other in atomic mass. If we consider a
particular molecule and another substituted molecule having an isotope of a particular
atom substituted, there will be a difference in the masses of these two molecules. For

example, if we consider 120160 and 13C160, there is an increase in the mass of
13¢160 a5 compared to 12¢160, Then, the reduced mass of the molecule having
higher mass isotope, Ii.e. 13160 in this case, is more than the 2160 | This would

lead to a higher value of I for 13160 which in turn indicates a lower value for
rotational constant, B for this molecule. The experimental values of rotational

constants of 12C10 and 13C1%0 are as given below:
Rotational constant for 120160 = B = 192118 cm™?

Rotational constant for 1>C!°0 = B’ = 1.83669 cm™!

h
gnllc’

are all constant and B is inversely proportional to 1. Thus, we can write

If we carefully examine the expression B = we conclude that the terms A, 7, ¢

B __h 8n21'c (here I and I’ represent the moment of inertia
B gl h for 12C1%0 and !3C160, respectively.
I )
=T
And I’ =;t'r2 and/ =,ur2
B _I' _u _
Thus, 7= =4 =106 . (330)

(the bond length 7 of the molecule does
not change on isotopic substitution)

From the above equation, we know the ratio of u#’ to u. Thus, if we know u, we can
calculate '.

Hence w =1046 u : .. (331)




We know that atomic mass of °0 = 15.9994 and that of 2C = 12.00 Rotational Spectra

159994 m
13¢

So, po=———1c_
15.9994+m,

- (332)

and
12 x 159994
A= 12+ 15994 - (333)

Expressing the Eq. 3.31 in terms of atomic masscs as expressed in Eq. 3.32 and 3.33,
we get

15.9994 m
Be _ | gugx 12%15:9994
15.9994+m,,_ 12+15.9994

On solving the above equation, we obtain the value of M, =13.0007 which is the

precise value of mass of Bc isotope and is in agreement with the valac obtained by
other methods. Before we close our discussion on the determination of atomic mass of
an isotope, we would also like to focus your attention on the appearance of the
rotational spectra after isotopic substitution, You have studied above in case of

3C160 that substitution of a heavier isotope leads to a decrease in the value of
rotational constant. Since the value of B is related to the spacing of spectral lines in the
rotational spectrum, a lower value of B’ indicates smaller separation between the
rotational levels and also in spectral lines This is shown in Fig. 3.6, ]

1 co o
42B, 6
\——Zr 2 B',
128
Jr
N8 S S —— s
108
108"
200 4 — -
8B, o
128 3 - - R — 2
68, o
& 2 . o
- 48: B 0’
281 =
s ¥, w

. 2w
o2 __up & ﬁ | |T- 128
— 28 @ 4B R [7] TL - 128
= St—p _
Fig. 3.6: Decrease in spacing between rotational levels and speciral lines
due 1o Isotopic substitetion. ' '
Till now we based our discussions on the rigid diatomic molccules. In the next section,
you will study what happens when we are dealing with a non-rigid molecule. Before

going to the next section, answer SAQ 3 given below to check your understanding
about the above section.

SAQ3

From the rotational spectra of MNO and ’NO, it was found that %— = 1,0361 where B

and B ' are rotational constants for ¥NO and 'NO, respectively. Calculate the atomic
mass of 1sN'if the masses of '*N and O are 14.004 and 15.9994, respectively.

77
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3.5 NON-RIGID ROTORS
The rigid rotors we considered before present an ideal case and actually when a
molecule rotates, its atoms experience a centrifugal force. Since the bonds are elastic
to some extent, when a non-rigid molecule rotates, the centrifugal force leads to the
stretching of the bonds. This stretching leads to an increase in the bond length and
5 hence an increase in the moment of inertia. As a result of this, there is a decrease in
K . the separation between the rotational energy levels and also in the spectral lines. see
Figs. 3.7 and 3.8.
. 6
J —
208 4 4
12B - 400D s
v=8B |v=8B ~29%6D
3
128 _ 12B- 144D s _—
v=6B v=6B 108D ] !
. [ —--—-—_!_x__
[} 1
. o ———
_ 6B 2 6B- 36D o :
] i v=4B ) v=4B-32D
Tv-2s V=3B -4p 2B~ —
Rigid 0 — Noarigid Rigid Rotor Non-rigid Rotor
Fig. 3.8: Energy level diagram for the rigid and non-rigid rotators. The spectral lines arising from the
Fig: 3.7: Effect of centrifugal . transitions are indicated below the energy level diagrams.
distortion on the energy levels T, effect is taken care of if we write the v as given below:
of a diatomic rotor. - 2 n2 )
v=BI(J+1)-DPR(J+1) . (334)
where D is the centrifugal distortion constant and is given by the following equation.
4B
= -% .. (339
w : ,

The value of D is obtained from the spectral results and is always very much less than
B. The spectra of non-rigid molecules will show a decrease in the spacing between
rotational levels and in spectral lines similar to the one shown in Fig. 3.6 but here the
decrease will be comparatively much smaller.

In the next section, you will study about the rotational spectra of polyatomic molecules.

3.6 ROTATIONAL SPECTRA OF POLYATOMIC
MOLECULES

Till now, we focussed our attention on the simple case of linear diatomic molecules.
The rotation of a polyatomic molecule is quite complex as compared to the diatomic -
molecules considered above. The rotation of a polyatomic molecule could be
simplified and understood in a better way if we consider components cf the rotation
about the three principal axes. Thus, a three dimensional molecule will have three
moments of inertia about the three axes (x, y, z). You may remember that in the
previous case of a diatomic molecule, we considered the rotation about an axis
perpendicular to the axis of symmetry of the molecule, But actually, the rotation of the
diatomic molecule could be about all the three axes (x, y and z) as shown below:
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(a)

Fig. 3.9 : Rotation of a diatomic molecule about centre of mass:
(a) about x axis (b) abouty axis (c) about z axis.

Let the momeants of inertia for the above rotations be represented by /s, /c and /,,
respectively. Since the rotations as shown in part (a) and (b) are equivalent, we can say
Ig = I4. In part (c), the moment of inertia about the bond axis (y-axis) has a very small

value as compared to /g and /- and wé can use an approximation that /, = 0. The

small value of /, could be attributed due to the differences in the masses and the radii

of the nucleus and the electrons.

You know that most of the mass of the molecule is concentrated in the nuclei of its
atoms in a very small space. But the electrons having very less mass occupy relatively
large space. Therefore, the electrons contribute a major share to the moment of
inertia along the axis of symmetry because only they will be contributing to the
motion. The total moment of inertia (both due to electrons and nucleus) is very

small. Since the energy of the rotational levels is proportional to %, the energy of the
rotational levels corresponding to rotation about the symmetry axis (Fig. 3.9(c)) will be
very-very high as compared to that of the rotational levels for rotations shown in Figs.

3.9(a) and (b). Thus, these rotational levels will not contribute to the rotational $pectra
and the value of moment of inertia used in Eq. 3.26 could be either of /5 or /. because

both of them are equal.

With this background in our mind, let us shift our attention to polyatomic molecules.
Polyatomic molecules can be classified into various groups according to their values of
moments of inertia along the three principal axes. Such a classification is given below
in Table 3.1. '

Table 3.1 : Various Classes of Polyatomic Molecules.

Moments of Inertia Type of Rotor Examples gglt;:i;:lr:al

Iy =lc, [y =0 Linear CO,HC1, 0CS A=a,B=C

Iy =le= 1, Spherical top CHs, SFe A=B=C

[y <dy =1 Prolate CHaF, CHi3Cl A>B=C
Symmetfical top

Iy >y =/, Oblate BCl3, C¢Hg A=B>C

IannIp=ic Asymmetric top CH:Clz, H20 A»B=C

About the linear systems, you have é_lready studied in detail for diatomic molecules.
Similarly, we can treat linear triatomic and other linear polyatomic molecules.

Let us study the case of a triatomic molecule OCS. Here also we will assume that it is a
rigid molecule. If you see the structure of OCS shown in Fig. 3.10, you can find that
there are two bond lengths, C-O and C-S. But we have one value for the moment of
inertia which cannot give two values of bond distances. This problem can be solved by
using isotopic substitution as follows.

Rotational Spectra

Note that the moment of inertia
about the molecular axis is zero and
the moment of inertia about the
other two axes perpendicular to the
molecular axis are identical

Hence, only one numerical value of
I occurs for a linear molecule and
the energy is defined by only one
quantum number, J.

In case of polyatomic molecules
when the rotation in three
dimensions is possible, kinctic
energy of rotation (£,) can be
given as

1 1 2, 1
EK-EIAJA +EIB wB+~i-lca)zc

. (3.36)

Similar to Bq. 3.24, we can writc

2 2 2
Ia L Ec
ZIA 2’8 2’(:
- (337)

E,

where L, =1, 0,
Ly=Ilgwy
Lo=1Icae

Here, the magnitude of total
angular momentum is given as
follows:

2 2 2 2
L=12 +1% + 12

Thus for linear molecules where
14 =0, I:q. 3.37 becomes as follows:

£ @&+ 12

3
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Fig. 3.10: OCS molecule.

Let the masses of O, C and S be represented by m_, m_ and m,, respectively. Also let

the distances of the atoms O, C and S from the centre of mass (G) be represented as
r,, 7. andr,, respectively. The centre of mass (G) will be such that

myro+mrr.=mgr, (3.38)
The moment of inertia of this system (J) is given by the following equation.
I=m,2+m*+m7? - (3.39)
We can express 7, and 7, by the following expressions (see Fig. 3.10).
ry=ro | . (3.40)
and Te= T, . (3.41)

We can substitute the above values of 7, and 7, from Egs. 3.40 and 3.41 into Eq.3.38 to
yield the following expression.

m, (o tr) tmr.=m, Ts—To
or mrot+myr.tm.rr.=m.r. —mgr
Bringing all the terms containing 7 on one side, we can write

m,’, + m.r, + myr.=myro—-mr.,

A (mo +m, + mJ =mr-mgr.,

If we representm + m_+ m,, the total mass by M, the above equnation becomes as
given below o

rﬂ =M T =My e .. (3.42)

Similarly, we can express Eq. 3.39 for I in terms of 7, andr, as given below:

I=m (r, +r,:)2 + mcrf +m, (rcs‘-r,;)2

2 2, 2
=m r_+m r. +2m vy r o+m_r
olco ¥ .

+m r2 +m r2 ~-2m_r_.r
o'c -"Mo'coge ! c'c s'cs s'c s'¢ T

5 CsSC

Rearranging, we get
I= mo'% + mc'%-"' ms’z + U (myreg—mgry) + mo'%o + ms'%s - (3.43)
o= Mrf + 2 (Mg Teq—Mg7e) + mor%o + m,r%, . ' - (3.44)
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Substituting value of 7, from Eq. 3.42 ino the above equation, we get . Rotationsl Spectra
- 2
myre—mgr, mr—mgr, :
I=M (_iﬁ_g&) + Z(J—EF‘E—QJ . (mo Teo —Myg ’cs) +m, ’%o +m, ’%s Eq. 3.45 can be simplified to the
following expression.
2 2 'I-—l-[mmrz+mmrz
My Peg=M, 7o, 2(myro—mgry) M Mol T MMy Toy
=M ™ - 73 +m 2 +m 2, +m m,(r, + r“)z]
. 2 )
(mgreg—mgrey)
=m 2 +m 2 - . (3.4
oo s M ( 5) You may remember that bond
Eq. 3.45 is the one on which we will further focus our discussion. It contains the two - distances do not change when
. . . o e . isotopic substitution is carried
unknown distances r, and 7 . Suppose we carry out an isotopic substitution in the out. \

molecule. i.¢., we substitute 130y in place of 160 and then recerd the rotational
spectra. The equation for moment of inertia (7 ) of this new molecule thus becomes as
given below:

_(mo”eo"ms’es)z

I - - (3.46)

I'=m'ory+mgrl,

where m ' represents the mass of the isotope of oxygen. Now, we have two cquations
[Egs. 3.45 and 3.46] and we can evaluate two unknowns 7, and 7, provided we know
the other parameters in these equations.

Next category of molecules is that of spherical top. These molecules have all the three
moments of inertia as identical. As far as the value of rotational energy is concerned, it
can be obtained by using any one of the above values of moment of inertia. These
molecules behave similar to linear molecules as far as their rotation is concerned. The
‘same equation as obtained for lincar molecules can be applied to give the value of

E, or B. But because these molecules, being symmetric in nature, do not possess any
dipole moment; Thus, these molecules do not show pure rotational spectra.

We will next consider symmetric top molecules. You are aware that in these
molecules, two moments of inertia are equal but the third one is different. When this
third moment of inertia is less than the other two equal moments of inertia, the
molecules are known as prolate molecules. On the other hand, when the third

moment of inertia is greater than the other two moments of inertia, then the
molecules are known to be of oblate type. Both these 1ype of molecules are shown
below in Fig. 3. 11.

C, mnique axis

e

Ic

benzene, CcH,,

) boron wrifluoride, BF;
methyl {luoride, CH,F

Fig. 3.11: Prolate and oblate symmetric molecules.

Again, in these molecules first we consider that the molecules are rigid and derive the
:nergy expression by solving the Schrodinger equation. The following equation is

ybtained by using the above method. o
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‘We will not go into the details
of arriving at Bq. 347. It is valid
for prolate molecules. -

For oblate molecules,

F=BJJ+1)— (B-C)Klem™

Unique axis is also known as
Top axis.

Eq. 3.50 permits determination of .

only one rotational constant.
Hence the complete geometry of a
symmetric top molecule cannot be
determined by using this single
value of B obtained from spectra.
In such a case, isotopic

substitution is used in structure
determination.

Thus, centrifugal distortion leads
to a slight separation of the
components of J.

- Eyg -
V=T =BT+ + m-B)chm 1 w (3.47)

h
SnZI_Bc

where, B =

h

A=
&rzlcc

Here, J is the total angular momentum and K is the component of angular momentum
about the unique axis. The unique axis along the C~X bond of CH,X molecule is
shown in Fig.3.11.Obviously the values of K will be smaller than or equal to J. Thus, KX

can take the following values. -

K=J, J-1, J2,..0,.., (J-D,~J ... (3.48)
So, K can take 27 + 1 values.

From the above equation, you can see that K can have negative values as well. The
+ ve and —ve values are associated with the clockwise and anticlockwise rotation

~ about the symmetry axis, When K = 0, it means that there is no rotation about the

symmetry axis or unique axis.

Eq. 3.47 shows that the rotational energy depends upon the K terms. So the anticlock
wise or clockwise rotation (i.e., the +ve-and —ve/values of K) will have same value for

K or energy. Thus, the levels corresponding to +K and -K will be degenerate.

The selection rules for the rotation of such molecules are

AJ=+1andAK=0 . (3.49)

The selection rule of A K comes from the fact that there is no dipole moment about
the symmetry axis (rotation about which is represented by K), hence electromagnetic
radiation cannot interact with the rotation about this axis. Hence, it is expressed as
AK=0.

If we apply the above selection rules to Eq. 3.47, we get

Vs~ TYu=BU+1) I +2)+A-BKI-[(BIJ + 1) + (A-B)K}]
=2B(/ +1)cm! . (3.50)
where J =0, 1, 2..ccccerinnne

You can see that K is not reflected in the final equation for rotation and Eq. 3.50 is
similar to expression for 7 obtained for the rotation of linear molecules.

Similar to the case of linear molecules, the centrifugal distortions due to non-rigid
nature of real molecules are taken care of by incorporating an additional term in the
energy expression as given below in Eq. 3.51;

" Vyg,k)y=BJIJ + 1)+ (4-B)K* - Dy J*(J + 1) —D,’KJ(J + 1)K? - Dy K* cm™!

;(J"'I,K) '—;(J,K) =2B (I + 1) —-4D] (] + 1)3—- ZDJK (J + l)Kz Cm—l ven (3.5]

Thus, we could take the case of symmetric top molecules to be similar to that of linear
molecules. The same procedure can be used for calculating B and I and bond lengths
for symmetric top-molecules as done earlier for linear molecules. But here, there will




be a difference in the observed spectrum for symmetric top molecules as far as the Rotatlonal Spectra

splitting of rotational lines is concerned. Since cach value of J is associated with 27 + 1
values of K and the levels corresponding to +K and -K being degenerate. This leads to
the fact that the spectral line associated with a particular level will be split intoJ + 1

components. Thus,the following splitting pattern will be observed.

when,  J K ¥ (from Eq. 3.51)
1 0 4B - 32D,
+ 1 4B - 32D, - 4D,
0 6B — 108D,
2 =1 _ 6B-108D,-6D,
+2 6B — 108D, — 24D

Thus, the spectrum obtained will look like as shown below in Fig. 3.12.

- K=}
———
S J=5
/
128
/
K= —/z/z; S8/ 'J(:Z
+
J=5
/ w g 0L 102 23 34
J=5,K=1 / / _
B /jr——428¢(d-ﬂ) 128 //—K's—— I ] 1 -1
J=5,K=0 o J=5 om
: k=2 . 28 48 8 38
——a—108 128 ',——1:4 208 + 4 (A-8) } i \
/ ' ! i \
108 J=4,K=1 i H ". N
208 + (AB) gy | h 5\
! o 128 + 4 (A-B) o i O *
J=4,K=0 o S/ I ) i iy \\\
., |68 ! | { K \
k<1 /) K=2 . i {1 \
8 s - | i i \
J=3, k=0 / ! 1-1 P \
— 158 Je2,k=1 (8 x-S0 00 22 101 090 33 292 151040
el 68 + (A-B) X
2608 ’=1"K=1 B siua
—— L

0
®

Flg. 3.12: (a) Rotatlonal energy levels of grelate symmetric top molecules.
(b) Splitting of rotational spectral lines for symmeiric top molecules.

Remember that no such splitting was observed for linear molecules. In other words, by
studying the spectra, you can know whether a certain molecule is of linear type or of

symmetrical top type.

The analysis of rotational spectra of last class of molecules, i.e., Asymmetric top

. . . . Note that in case of symmetric
molecules is quite complex and a general expression for energy cannot be written for top molecules, each lines is
them. lj:ach molecul-e of this cla§s require_s individual treatment. In this course, we Will  reaya super;)osilion of J + 1)
not go into the details of analysis of rotational spectra for this kind of molecules. lines.

In the next section, you will study about the intensity of spectral lines.

3.7 POPULATION OF ROTATIONAL ENERGY LEVELS
AND THE INTENSITIES OF SPECTRAL LINES

According to the selection rule, all those transitions where AJ = *+1 are possible. It

has been shown by calculations that the probability of all such transitions is the same.

However, this does not mean that all the transitions will have the same intensity.

Although the chances of a molecule going fromJ = 0toJ = 1 is the same as

J = 2toJ = 3, yet the intensity of the two lines may differ. This is so because the total

number of molecules initially present inJ = 0 will be different from the molecules

present in J = 2. The larger the number of molecules present in a particular state, the 3
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larger will be the chances of transitions to the next state and hence greater will be the
intensity.

The population of the cnergy state depends on (1) Boltzmann distribution and (2) the
degeneracy of the state.

Boltzmann distribution can be expressed as,

N -AE /kT
L= . (3.52)

thrc, N; = number of molecules in any state
N, = number of molccules in the lowest level, i.c.,
J=0
E| = energy difference between the two states
. k = Boltzmann constant
T = temperature in Kelvin

Eq. 3.52 can be rewritten as,

N
s :e-‘thJ(J-H)/kT (35%)

N
0

One thing is clear from Eqgs. 3.52 and 3.53 that the population of different states kecps
on decreasing in an exponential manncr as we keep on increasing the J value.

Howver, there is another factor-the degencracy of the state which will affect the
population. We shall not discuss the origin and number of such degenerate states,
except to emphasise that degeneracy of a state incrcases the population of a particular

~ energy state.

The net result of the two factors is that the population rises to a maximum and then
decreases as J value increases. The band with maximum intensity is given by,

. (350)

SAQ 4

Calculate the relative population of first two rotational energy levels for HCl at
300K. Use B = 10.49 cm™

3.8 SUMMARY

In this unit, you learnt about various types of energies associated with different kind of
molecular motions. Rotational motion was the one in which were interested in. In this
context, the terms moment of inertia and angular velocity were explained. Then, the
rotation of a rigid diatomic molecule was discussed in detail. The energy levels
associated with such molecules were considered which in turn were related to the
observed rotational spectra.

. The applications of rotational spectra study were highlighted. The case of non-rigid
_molecules was also explained. This was followed by the discussion of rotational spectra




of polyatomic molecules. In this class, linear, spherical and symmetric top molecules
were discussed.

Lastly, the relationship between the intensity of rotational spectral lines with
population of rotational levels was described.

3.9 TERMINAL QUESTIONS
1. Usi deri 'l
. sing myry = m,ry, derive ry = ————,
gmyr 272 2 (ml ¥ ’"2)
2. Calculate the energy in terms of v of the energy level corresponding toJ = 7.
3. What is the selection rule for a rigid diatomic molecule to show rotational
spectrum?
4. Which of the following molecules will show rotational spectra?
0=C=0, HF, N,
5. If the rotational constant for H °Cl is 10.59 cm™), what is the value of
rotational constant for 2D °CI?
Use mass of °Cl = 58.06 x 167" kg

mass of 2D = 3344 x 107 kg
mass of 'H = 1.673 x 1077 kg

3.10 ANSWERS

From Eq. 3.26, a decrease in moment of inertia will lead to an increase in the
energy of the rotational level.
It should possess a permanent dipole moment.
B _L _ 0361
B u
u' =1.0361xu

N x 15.9994 _ 1.0361 (14.004 x 15.9994)
BN + 15,9994 14.004 + 15.9994

15N = 14.98257

heB  (6.626x107°* J5)(2.998x10¥ ms™")(10.4cm™")(10%m ™)

o (13806)(10—23]1(—1)(3001()
=5.007x1072
N
For J =0, ——NJ =1
0
For J =1 N_J_e-2(5.007x|o-2)
) N =

o

Rotational Spectra
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Spectra : _
' 1. myry = myr,
r m
n - my

From the characteristics of proportions,

rz 1711

r1+r2—ml+m2

my (rp + 1)
ry=——>
(mq + my)
_ my
- (my +m,)
2. =BJ(J + 1)
=B X 7_(7 +1)
=BX7x8
= 568
3. AT = *1
4, HF
5.  5.446cm™
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