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3.1 INTRODUCTION 

From this unit onwards we shall study the interaction of electromagnetic radiation with 
an assembly of molecules rather than atoms, as has been done in the first unit of this 
Block. This interaction will result in the so called molecular spectra of compounds. 
Just like we extracted information about the structure of atoms from the atomic 
spectra, we shall try to find out what information can be obtained from the molecular 
spectrum regarding the structure and the behaviour of a molecule. 

It will be seen that absorption or emission of electromagnetic radiation in different 
regions, corresponding to different amounts of energy, would cause various types of 
changes in the molecule. Thus, the spectra in each region would give a definite and 
specific piece of information about the molecule. For instance, when the molecule is 
subjected LO radiations in the microwave region, we get information about the 
rotational properties of the molecule which in turn gives the values of molecular 
parameters like bond length. 

On the other hand, molecular spectrum in the infrared region is related to the 
vibrational properties of the molecule. About vibrational spectra, you will study in 
Units 4 and 5 of Block 2. Since each region of spectrum requires a separate source of 
characteristic radiation, sample preparation and recording technique, you will study 
about them separately in Unit 9 of Block 3. 

In this unit, we will start our discussion with the concept of motion leading to the idea 
of moment of inertia associated with a rotating body. On the basis of the moment of 
r n ~ r t ~ ~ i ,  ~iiolccule\ ~ v r l l  he clnss~fic~i a\ Irii~ar. \?rnriictrlc top, asymmetric top and 
spherical top molecules. We will then explain the rotational spectra of rigid linear 
molecules in detail. We will also see what happens when a molecule is not rigid? We 
will explain briefly the rotational spectra of simple polyatomic molecules and intensity 
of spectral lines. 

Objectives 

After studying this unit, you should be able to: 

a define the moment of inertia, 

a discuss the rotational spectra of rigid linear diatomic and triatomic molecules, 

a give applications of study of rotational spectra, 
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a explain the effect of isotopic substitution and non-rigidity on the rotational 
spectra of a molecule, 

a classify various molecules according to their values of moment of inertia, 

a discuss the rotational spectra of simple polyatomic moleoules, and 

a relate the intensity of spectral lines with the population of a rotational level. 

3.2 MOLECULAR MOTION AND ENERGY 

The understanding of molecular motions help in the interpretation of molecular 
spectra. When we talk about molecular motions, there are various possibilities. When 
we want to specify the position of a body in space, we have to specify the number of 
degrees offreedom it possesses. The number of degrees of freedom is related to the 
number of independent coordinates required to specify the position of the body in 
space. Fcr example, for a single particle we need three Cartesian coordinatesx,y andz 
to specify its position. Hence, it is said to have three degrees of freedom. Thus, for a 
molecule having N atoms, the total number of degrees of freedom is 3N. 

For a single particle, only one type of motion is possible which is called translational 
motion. Hence, we can say that a single particle possesses three degrees of 
translational freedom. 

But what about translational motion of molecules? A molecule contains two or more 
than two atoms. Since the atoms in a molecule are joined together, the molecule as a 
whole will show translatory motion and the atoms will not move independently. The 
translational motion of a molecule can be described in terms of the centre of mass. 
The centre of mass is the point where the whole mass can be considered to be 
concentrated. Thus, we can specify three coordinates for the centre of mass and say 
that it has three degrees of freedom, similar to a single particle. The translational 
motion of centre of mass of a molecule (non-linear) is shown in Fig. 3.1. 

A molecule can store energy by Flg. 3.1: Translational motion of centre of mass of a nonlinear molecule. 
way of molecular motions. 

For a polyatomic molecule having N  atoms, ( 3 N  - 3 )  degrees of freedom still remain. 
These can be attributed to internal motions such as rotation and vibrations. 

Let us now know more about rotational motion. The simplest case of rotation is that of 
a particle about a fmed point, as shown in Fig. 3.2. 



Fig. 3.2: Rot:~llon ot a parllclc about a tbred polat. 

The rotational kinetic energy of this particle having mass m and velocity v can be 
expressed as 

Q 
1 P2 

Ek = - mv2 = - wherep = rnv is the momentum of the particle ... (3.1) (@ &' 

2 2rn 'C 
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The velocity of this particle could be expressed as the distance travelled by it divided 
by the time taken. For one revolution, we can say that 9 

distance h r  L' = -- - -- - ... (3.2) 
time t 

where t is the time taken for one revolution and is also known asperiod. For circular motion if a paiticle P 
traverces an angle A 8 in time At, _ 

1 the arc PQ represented as As it8 
Also t =  

frequency (j) ... (3.3) given by the following relation: 

Substituting the value oft from E.q. 3.3 into Eq.3.2, we get r . A 8 =  AS 

v = 2nr.f 

Replacing v in Eq. 3.1 by its value from Eq.3.4, we can write 

The terms in the above equation can be rearranged as given below: 

Dividing by At on both the sides, 
--, (3.4) are get 

When At - 0 .  we can write 

... (3.6) or , mr-, 
where a, is the angular velocity 

The quantity nt? of the above eq-.lation is called the nloment of inertia and is and v is the linear velocity. The,. 
angular velocity, a, is defined as 

represented by I. The term 2 j ie. known as the angular velocity and is denoted by o. the number of radians of angle 

Thus, we can rewrite Eq.3.6 as 
swept in unit time. 

de 
It is given by - where dB is the 

dt ' 
angle traversed in dt time. It is 

Ek = 1/21 02 , ... (3-7) expressed in terms of radians rer-'. 

On comparing Eqs.3.1 and 3.7, wc can say that in the equation for rotational motion 
(i.e., Eq. 3.7), moment of inertia is the equivalent of mass as used in Eq. 3.1. Also in 
Eq.3.7, angular velocity (w )  is used in place of linear velocity (v) used in Eq.3.1. 

I 

3.3 ROTATIONAL SPECTRUM OF A RIGID DIATOMIC 
MOLECULE 

-.. 
Let us now apply the above ideas to the rotation of a diatomic molecule. We will first 
assume that this diatomic molecule is a rigid body. This means that the distance 
between the atoms, i.e. the bond length does r~ot change during the rat ion.  In other 



Basic Cmecptr md Rdatlonal tvords, vibrational movement is not taking place during rotation. We are also assuming 
Spectra that the centre of mass of the molecule is fixed. Hence, there is no translational motion 

of the molecule. No real molecule can be called an ideally rigid body. But many molecules 
[nay be considered as rigid because their vibrational motion is small. Let us now focus our 
attention on Fig. 3.3 which depicts the rotation of a rigid diatomic molecule. 

Note that the axis about 
which the rotation takes 
plaa, is perpendicular to the 
axis of symmetry of the 
molecule. 

a x i s  of rotation 

I I symmetry 

((11 (b) 
Flg. 3.3:(a) A rlgld dlatomlc molecule. 

(b) RohUoo of a rigld diatomic molecule. 

When such a molecule rotates, it rotates about an axis passing through its centre of 
mass(('hl! The centre of mass is shown by the point 0. For such a system,the centre of 
mass is such a point for which the following condition is satisfied: 

ml r1 = m2 r2 

We can rearrange Eq. 3.8 as follows 

Using the characteristics of proportions, Eq.3.9 can be written as 

We also know that the bond length or the distance between twoatoms. r-,is equal to the 
sum of rl and r2. Thus, we can write 

Substituting r = rl + r, from Eq. 3.12 into Eq.3.11, we get - 

On similar lines, we can get 

by starting from Eq.3.8 and rearranging it as 

Why do not you try Terminal Question 1 and check it. 

Let us now write the energy of this system using Eq3.7. 



You can imagine this molecule a:; a two particle system (Compare Figs. 3.2 and 3.3). Rotational Spectra 

Heie, you can see that two particles (atoms hav& masses nt,- and k 2 )  are rotating 
Note that the moment of inertia for 

about the point o. Thus, the rotational kinetic energy, Ek of this system will be the sum , , < .  

of the Ek values of both the particles. So, we can write I = m# and for a diatomic molecule 
! . " ,  : ' , , ; l , < t . ' , \ \ i , ' , , I  I '  \ L \ ; , ! L '  ..: 

as 1 = ml 4 + mz 4. We can qxtend 

,.. (3.16) this argument and generalise it for  
~o lva tomic  molecules as follows. . . 

The angular velocities of the two masses m, and m2 will be equal because of the For a polyatomic m o ~ e c u k ,  the 
moment of inertia about a particula 

rigidity of the molecule. Hence, axk is given by the sum of moments - .  
due t o  various nuclei about that cuh 

w1= 0 2  ... (3.17) i r . ,  I = L mi 4 where ri is the 
i 

Let this angular velocity be w. So, we can rewrite Eq.3.16 as perpendicular distance of the 
nucleus of mass mi from the air 

where I ii the moment of inertia 11f the diatomic molecule. 

The terms rl and r2 can be eliminated,from Eq. 3.18 by using the values of rl and r2 

from Eqs. 3.13 and 3.14, respectively, as given below: 

= A  [ m 1 m V  + m 2 m Y  
2 (m, + ,n2)2 (ml + md2 

Comparing Eq. 3.19 with Eq. 3.18, we can say that 

Thus, I = ml m2 r:i 
("fl+ " 2) 

Remember that we have earlier 
defined I as &. 

... (3.19) 

Here, m1 m2 can be denoted byp wbich is known as the reduced mass. 
(ml + m2) 

Thus, we can write 

1 = p 2  ... (3.22) 



B*Canc*rdmd'oolrl Thus, the idea of using reduced mass is to mathematically simplify the rotation of a twoparticle 
Spntra system into that of a oneparticle problem. In other words, we have replaced the two 

niasses ml and m2 by a single massp. You must have also realised that similarly we 

have also replaced the two distances rl and r2 by r. 

At this stage, we have come to a point where we can deal with the rotation of a 
diatomic molecule having masses ml and m2 in terms of the rotation of a single 
particle of massp having a distance r from the origin. 

Let us now reconsider Eq.3.18 which says 

This equation isalright as per &e classical mechanics approach. But when we apply 
quantum mechanical approach to the molecule, certain restrictions appear on the 
rotational energy. 

D o  not  confuse the L used in Eq. Eq. 3.18 can be expressed in terms of angular momentum L which can be defined as 
3.24 witb that used in unit 1. Herr, 
L F p m e n t a  the angular L = I w  ... (3.23) 
momentum of the molecule 
undergoing end to end rotation 
about the centre of m a s  wherpas SubstitutingL for I  w  in Eq.3.18, we get 
in unit 1, it was used to denote the 
angular momentum of the 
ekctmn inan atom. 

1 L~ E , = 5  7 

Since the angular momentum is quantised, it can be expressed in terms of the 
rotational quantum number, J, as given below: 

The rrstriction on the value of J 
comer from quantum mechanics. where J can takeiralues 0,1,& 3... 

Substituting the above value of L in Eq.3.24, we get 
, 

The above equation gives the rotational energy of a molecule. The energy can also be 
expressed in terms of wave number, v. The energies as expressed in terms of i; are 
referred to as krm values and are denoted by F (J ). The SI unit of a term value is m-I 

, but they are usually expressed in cm'l. 
h 

We li,~\c L I F C ~  tl = - 111 Eq 3 27 

Thus, 

The term - can be represe&ed by a constant B which is known as rotaUonal 
&? IC 

constant, Hence, 9 3 - 2 7  can be written as 

v=BJ(J+ 1) 

Thus, when J = 1, v = 2B cm" 

J = &  ;=6~cm- l  

J = 3, 5 = 1 2 ~  cm-' 
and so on. 



The corresponding energy levels are depicted in Fig. 3.4 - 

But we are more interested in knowing the difference between these energy levels so 
that we can know the radiation of what frequency or wavenumber is absorbed or 
emitted'when a molecule changes from one rotational level to the other. Thus, we can 
write the difference between two rotational levels-as follows. 

A E =  E - E  where J' is the final rotational level and./ 
h 

TI  k~~ is the initial rotational level. 

The for the above energy change can be given as follows: 

v,,.,, = B [J '(J ' + 1 ) - J(./ + 1 )] 

From Fig. 3.4, we can see that the energy difference between the successive energy 
levels is 2B, 48,68,8B, 10B and so on. The spectral lines originating from these 
transitions will appear as shown in Fig. 3.5. 

Flg. 3.5: The transitions between the varlolur rolatlonal levels and spectre1 Ihm mbhg 
rrom these trunsitlons. 



B;lsic Cwcepts and Rotational If you carefully see Fig. 3.5, we will notice that these spectral lines are equally spaced 
Spcctra and there is a constant difference of 2B between the successive lines. 

For a molecule to show rotational spectrum, the following requirements should be met. 

i) The first condition which a molecule should satisfy for showing rotational 
spectra is that it should possess a permanent dipole moment. This is because a 
rotating dipole produces an oscillating electric field which interacts with the 
oscillating field of the radiation. 

ii) There is a further restriction on rotational transitions for molecules having 
permanent dipole moment. The selection rule for linear molecule is A J = 2 1. 
So transitions could be from rotational levels having J = 0 -, J = 1; 
J =  l - , J = 2 ; J = 2 - , J = 3 ; J = 3 - J = 4  andsoon and in the reverse order 
also. 

Another factor which governs the intensity of rotational lines is the population of the 
initial or ground state. You will study about this in Sec. 3.7. 

The Condition for the Occurrence of Pure Rotation Spectra 

In the Appendix of Unit 2, we have mentioned the applications of character tables. 
One of the applications lies in determining whether a spectral transition could 
occur from an energy state a to the energy state b. For such a transition to occur, at 
least one of the components of the transition dipole moment, p,  which is equal to 
$ tyb M ty,, must have a non-zero value. You may be aware that tyb and tya refer to 
the wave functions of the energy states, b and a, whereas M is the dipole moment 
operator. In case of pure rotation spectra, it means that at least ope of the three 
components of transition dipole moment, tc,, py or p, in x, y and z directions must 
have a non zero value in order that the molecule absorbs in the microwave region. 
p, py and p, are related to M,, My and M, which are the components of the dipole 
moment operator M as given below: 

P ~ = $ v ~ ~ ~ ~ ~ ~ ~  ... (A.1) 

py = $ u ~ ~ ~ ~ u ~ ~ ~ ~  ,.. (A.2) 

pZ = $VJbMzva ... (A.3) 
Note that p (bold type) stands 
for transition dipole moment 
whereasp (Roman type) refers Also M, My and M, are related to the permanent dipole moment ,p ,  of a rotor and 
to the permanent dipole the polar coordinates, 8 and @ , as per Eqs. A.4 to A.6. For understanding the 
moment.Alsot(,~(yandp~are resolution of the dipole moment operator M in terms of M,, MY and M, as per 
the components of transition 
dipole moment inx,y and z 

Eqs. A.4 to A.6 and Fig. A.l, you are advised to go through Eq. 2.54 of Unit 2 of 
directions. CHE-01 ('Atoms and Molecules' Course) where the relationship between the 

spherical polar coordinates and the cartesian coordinates is given. 

Mx = p  sinOcos@ ... (A.4) 

My =psinOsin@ ... (AS) 
M, = p  cos8 ... (A.6) A @ 

If a molecule lacks permanent dipole moment (i.e., p = 0), then M, My and M, and 
hence,p,, py andp, are zero as per Eqs. A.l to A.6. For a molecule having zero dipole 

1 ,,*, moment, all the three components of transition dipole moment are thus equal to zero. .. 
As> result of t h ~ s ,  amolecule with zero dipole moment cannot give rise to pure *. rotation spectra. In other words, for a molecule to absorb in the microwave region, 
it must have permanent dipole moment. Insub-Sec. 2.10, of the last unit, we have 
mentioned that only molecules belonging to the groups C,' (Cl and CJ and 

Fig. A.1: 'I'ransformaUon of C,,, (C2,,  C,,. . . . .Cr ,) and Cs may have permanent dipole moment. Now you can 
earteshn lo spherical 
pohr coordlm(Cs understand as to why HBr, CO and OCS (all of C,, point group) can exhibit pure 

rotation spectra but H2 and C02 of Dmh point group) cannot. 



SAQ 1 --Spacbr 

What is the effect of decrease in the moment of inertia on the energy of the rotational 
level? 

............................................................................................................................................................ 
SAQ 2 

What is the necessary condition for a molecule to show rotational spectrum? 

3.4 APPLICATIONS OF STUDY OF ROTATIONAL 
SPECTRA 

(i) Determination of moment of inertia and bond length 

From the last section, you know about the relationship between the energy (or 
wavenumber) of radiation absorbed or emitted, required for the change of rotational 
level and the moment of inertia. You can now think of the reverse process of what we 
have learnt above. If we determine the frequency of radiation absorbed or emitted 
requiredsfor the change of a particular rotational level, we can relate it to the value of 
B, the rotational constant. Once B  is determined, we can calculate the moment of 

The value of rotational constant, B 
inertia using the expression B = . - . The value of moment of inertia SO obtained of am. ~ o l r ~ l ~  obtained 

872 IC from their rotational spectrum is 
can be used to give the value of r, the bond length if we know the reduced mass of the given below: 

system. One such example is illustrated below: 
Molecule ~/em-'  

The transition from J = 0 to J ' = 1 for HC1 takes place at V = 21.18 cm-l. What is the co 1.93128 
1 35 bond length of H C1 ? HP 20.90 

HBr 8.4648 

Let us follow the steps we have listed above. 
HCI 1059 
HI 6.426 
KC1 0.1286 

- 
Thus, v = 2 B cm-' (from Eq. 3.29) 

h 
Also, I = - 

an2 BC 

Now I = p #  

To know r, from the above equation, we have to first calculate p  as shown below: 



Thus, 

= 1.275 x lr1° m 

r = 127.5 pm @) Another application of the study of rotational spectra is in the determination of the 
mass of a particular isotope or isotopic abundance of a particular isotope. 

You know that isotopes differ from each other in atomic mass. If we consider a 
particular molecule and another substituted molecule having an isotope of a particular 
atom substituted, there will be a difference in the masses of these two molecules. For 

13 16 example, if we consider 12c160 and C 0, there is an increase in the mass of 
13c160 as compared to 12c160. Then, the reduced mass of the molecule having 
higher mass isotope, i.e. 13c160 in this case, is more than the 12c160 . This would 

13 16 lead to a higher value of I for C 0 which in turn indicates a lower value for 
rotational constant, B for this molecule. The experimental values of rotational 
constants of 12c160 and 13c160 are as given below: 

Rotational constant for 12c160 = B = 1.92118 cm" 

Rotational constant for 13c160 = B ' = 1.83669 cm-' 

If we carefully examine the expression B = - , we conclude that the terms h, x, c 
slt2 Ic 

are all constant and B is inversely proportional to I. Thus, we can write 

B h &I'c 
-3- - (here I and I ' represent the moment of inertia 
B slt21c' h for 12c160 and 13 c 16 0, respectively. 

B I '  I 

Thus, - = - = L = 1 . 0 4 6  
B I P  

(the bond length r of the molecule does 
not change on isotopic substitution) 

From the above equation, we know the ratio of p '  top. Thus, if we knowp, we can 
calculate p'. 

Hence p '  = 1.046 p ... (3.31) 



We h o w  that atomic mass of '60 = 15.9994 and that of =C = 12.00 b t d o d m  

and 

Expressing the Eq. 3.31 in terms of atomic masses a6 expressed in Eq. 3.32 and 333, 
we get 

On solving the above equation, we o b h  the value of m,,c =13;0007 which is the 

precise value of mass of *C isotope and is in agreement with the value obtained by 
othcr methods. Before we close our d i s c d o n  on the determination of atomic mass of 
an isotope, we would also like to focus your attention on the appearance of the 
rotational spectra after isotopic substitutioq You have studiid ebwa in case of 
'k160 that substitution oPa heavier isotope leads to a deaeasc in the value of 
rotational constant. Since the value of B is related to the spacing of spectral linu in the 
rotational spectrum, a lower value of B' indicates smaller acpatatioa between the 
rotational levels and also in spedral lines This is shown in Pi& 3.6. 

Till now we based our discussions on the rigid diatomic molecules. In the next sectipn, 
you will study what happens whet1 we are dealing with a non-rigid molecule. Before 
going to the next section, answer SAQ 3 given below to check your understanding 
about the above section. 

( From the rotational spectra of "NO and " ~ 0 , i t  was found that 5 - 1.0361 Where B 

and B ' are rotational constants for 1 4 ~ 0  and I S ~ 0 ,  respectively. Calculate the atomic 
mass of "N if the masses of ' 4 ~  and Oare 14.004 and 15.!WM, ri!spectively. 



3.5 NON-RIGID ROTORS 

The rigid rotors we considered before present an ideal case and actually when a 
molecule rotates, its atoms experience a centrifugal force. Since the bonds are elastic 
to some extent, when a nob-rigid molecule rotates, the centrifugal force leads to the 
stretchiig of the bonds. This stretching leads to an increase in the bond length and 
hence an increase in the moment of inertia. As a result of this, there is a decrease in 
the separation between the rotational energy levels and also in the spectral lines. see 
Figs. 3.7 and 3.8. 

v = 4 B  - 3 2 0  
ZB 

v = 2 B  v = ~ B - ~ D  28-4D 6- 

Rigid Nanrigid Rigid Rotor Non-rigid Rotor 

Fig. 3.8: Energy level diagram for the rigid and non-rigid rotators. The spectral lines arising from the 

PI& 3.7: EUul of ce~lruwgd transitions are indicated below the energy level diagrams. 

On (he enem levelr This effect is taken care of if we write the v as given below: 
of a dhtomlc rotor. 

V=BJ(J+ I ) - D J ~ ( J + I ) ~  ,.. (3.34) 

where D is the centrifugal distortion constant and is given by the following equation. 

The value of D is obtained from the spectral results and is always very much less than 
B. The spectra of non-rigid molecules will show a decrease in the spacing between 
rotational levels and in spectral lines similar to the one shown in Fig. 3.6 but here the 
decrease will be comparatively much smaller. 

In b e  next section, you will study about the rotational spectra of polyatomic molecules. 

3.6 ROTATIONAL SPECTRA OF POLYATOMIC 
MOLECULES 

Till now, we focussed our attention on the simple case of linear diatomic molecules. 
The rotation of a polyatomic molecule is quite complex as compared to the diatomic 
molecules considered above. The rotation of a polyatomic moleale could be 
simplified and understood in a better way if we consider components cf the rotation 
about the three principal axes. Thus, a three dimensional molecule will have three 
moments of inertia about the three axes (x,y, z). You may remember that in the 
previous case of a diatomic molecule, we considered the rotation about an axis 
perpendicular to the axis of symmetry of the molecule. But actually, the rotation of the 
diatomic molecule could be about all the three axes (x,y andz) as shown below: 



i Note that the moment of inertia 
about the molecular axis is zero and 
the moment of  inertia about the 

.k.: x&,z CM x ~ y ~ z  CM ' other molecular two asisarc axes perpendicular identical 
to  the 

Hence, only one numerical value of 
x Ioccurs for a linear moltcule and 

x the energy is defined by only one 
(a) (b) (4 quantum number, I. 

Flg. 3.9 :'Rotetlon of a dlatomlc molecnk about centre of mass 
(a) about x axis (b) about y axis (c) about zaxis. 

Let the moments of inertia for the above rotations be represented by I s ,  It and I,, 

respectively. Since the rotations as shown iu part (a) and (b) are equivalent, we can say 
IB = I,%. In part (c), the moment of  inertia about the bond axis (y-axis) has a very slnall 

value as compared to Is and Ic and w6 can use an approximation that I, = 0. The 

small value of I,% could be attributed due to the differences in the masses and the radii 

of the nucleus and the electrons. 

You know that most of the mass of the molecule is concentrated in the nuclei of its 
atoms in a very small space. But the electrons having very less mass occupy relatively 
large space. Therefore, the electrons contribute a major share to the moment of 
inertia'along the axis of symmetry because only they will be contributing to the 
motion. The total moment of inertia (both due to electrons and nucleus) is very 

small. Since the energy of the rotational levels is proportional to +, the energy of the 

rotational levels corresponding to rotation about the symmetry axis (Fig. 3.9(c)) will be 
very-very high as compared to that of the rotational levels for rotations shown in Figs. 
3.9(a) and (b). Thus, these rotational levels will not contribute to the rotational kP&a 
and the value of moment of inertia used in Eq. 3.26 could be either of  I B  or Ic because 

both of them are equal. 

With this background in our mind, let us shift our attention to polyatomic molecules. 
Polyatomic molecules can be classified into various groups according to their values of 
moments of inertia along the three principal axes. Such a classification is given below 
in Table 3.1. 

Table 3.1 : Various Classes of Polyatomic Molecules. 

Moments of Inertia Type of Rotor Examples Rotational 
Constant 

IB =Ic, I& = 0 Linear CO, HCI, OCS A = a , B = C  

1~ -I< = I,,, Spherical top C&, SF6 A = B = C  

I+$ /IM Prolate < CUIF. cH3c1 

A > B = C  > Symmetrical top 

11 >Iu =I( Oblate Bcl3,Gd-b A = B > C  

b t h t l c  Asymmetric top C M E h  , Hz0 A t B t C  

About the linear systems, you have already studied in detail for diatomic molecules. 
Similarly, we can treat linear triatomic and other linear polyatomic molecules. 

Let us study the case of a triatomic molecule OCS. Here also we will assume that it is a 
rigid molecule. If you see the structure of OCS shown in Fig. 3.10, you can find that 
there are two bond lengths, C-O and C S .  But we have one value for the moment of 
inertia which cannot give two values of bond distances. This problem can be solved by 
using isotopic substitution as follows. 

In case of  polyatomic molecules 
when the rotation in three 
dimemions is possible, kinetic 
energy of  rotation (Et) can be 
given as 

1 1 1 Et=-I  2 A  3 A +jlB";+-i~3c 
... (3.36) 

Similar to Eq. 3.24, we can write 

where LA = I,, 'u* 

Here, the magnitude of total 
, 

angular momentum is  given as 
follows: 

Thus for linear molcculeswhere 
I \  = 0, 1:q. 3 37  hecoines as follows: 



Basic Coaccptr md Rotational .- 
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3.10: OCSI molecule. 

Let the masses of 0 ,  C and S be represented by m, m, and m,, respectively. Also let 
the distances of the atoms 0, C and S from the centre of mass (G) be represented as 
to, r, andr,, respectively. The centre of mass (G) will be such that 

The moment of inertia of this system (I) is given by the following equation. 

We can express ro and r, by the following expressions (see Fig. .3.10). 

and .r,=rcr-rc ... (3.41) 

We can substitute the above values of ro and r, from Eqs. 3.40 and 3.41 into Eq. 3.38 to 
yield the following expression. 

Bringing all the terms containing r, on one side, we &XI write 

I, (m, + m, + m& = mar,-morco 

If we represent mo + m, + m, , the total mass by M, the above equation becomes as 
given below I 4  # 

r p  -mrrcr-motm ... (3.42) 

Similarly, we can express Eq. 339 for I in terms of to andr, as given below: 

I = mo (rm + rJ2 + mc( +ma (r,-rd2 

2 2 2 = 111 r + lllOrc + 2 1 1 l ~ , r ~ ~ 5  + 11rcrC +vtSrA +nisr: -211tsrcsrc - 
0 CO 

Rearrangiog, we get 

I =m,e +me$ + m , 4 +  2r,(morm-m,r& + m0&+ ma& ... (3.43) 

= ~ ~ + 2 ~ ( m , r ~ ~ - m , r ~ + m ~ & + m , &  ... (3.44) 
80 



Substituting value of r, from Eq. 3.42 in0 the above equation, we get W s o Y b .  

r . n r ( " . " i m o r ~ ) 2 + r ~ r ~ ~ ~ o r ~ )  . ~ ~ o ~ c o - m s r ~ + m o ~ + ~ s ~  Q . w r u b e ~ m p l i f k d t o t h r  fo~~owing apnnion. 

... (3.45) 
You auyrcmcmba that boa8 

Eq. 3.45 is the one on which we will further focus our discussion. It contains the two - 
~~~~~a~~~~~~~ unknown distances rco and r,. Suppose-we carry out an isotopic substitution in the out. 

molecule. i.e., we substitute ''0 in place of ''0 and then record the rotational 
spectra, The equation for moment of inertia (I ') of this new molecule thus becomes as 
given below: 

where m,' represents the mass of the isotope of oxygen. Now, we have twk equations 
[Eqs. 3.45 and 3.461 and we can evaluate two unknowns r, and r, provided we know 
the other parameters in these equations. 

Next category of molecules is that of spherical top. These molecules have all the three 
moments of inertia as identical. As far as the value of rotational energy is concerned, it 
can be obtained by using any one of the above values of moment of inertia. These 
molecules behave similiu to linear molecules as far as their rotation k concerned The 
same equation as obtained for linear molecules can be applied to give the value of 
EL or B. But because these molecules, being symmetric in nature, do not poaoess any 
dipole moment; Thus, these molecules do not show pure rotational spectra. 

We will next consider symmetric top molecules. You are aware that in these 
molecules, two moments of inertia are equal but the third one is different. When this 
third moment of inertia is less than the other two equal moments of inertia, the 
molecules are known as prolate molecules. On the other hand, when the third 
moment of inertia is greater than the other two moments of inertia, then the 
molecules are known to be of oblate type. Both these type of molecules are shown 
belowinFSg.3.11. 

I boron trilluoride, BF1 
inethyl lluoride. CH3F - 

311: W8(. a d  +l.b qmmdrlc m o l e d a  

1,' 1" '. 

benzene. ChH,, 

\gain, in these molecules first we consider that the molecules are rigid and derive the 
:nergy expression by solving the Schriidinger equation. The following equation is 
bbtained by using the above method. 



Basic Cmcepts md RoWlolul 
Spectra - E ~ y = 8 1 ( ~ + 1 ) + G ( - ~ ) ~ 2 c m - 1  

"JS = * 
We will not go into the details h where, B = - 
of arriving at Eq. 3.47. It is valid 
for prolate mo~ecules. &I+ 

For oblate molecules, . \ 

F =  BJ(J+ 1) - (B - c ) ~ ~ c m - '  

Here, J is the total angular momentum and K is the component of angular momentum 
about the unique aris. The unique axis along the C-X bond of C%X molecule is 

Unique axis is also known as shown in Fig.3.1 I .Obviously the values of K will be smaller than or equal to J. Thus, K 
TOP axis. can take the following values. 

\ 

Eq. 3.50 permits determination of 
only one rotational constant. 
Hence the complete geometry of a 
symmetric top molecule cannot be 
determined by using this single 
value of B obtained from spectra. 
In such a case. isotop~c 
substitution is used in structure 
determination. 

Thus, centrifugal distortion leads 
to a slight separation of  the 
components of I. 

So, K can take 21 + 1 values. 

From the above equation, you can see that K can have negative values as well. The 
+ ve and -ve values are associated with the clockwise and anticlockwise rotation 
about the symmetry axis: When K = 0, it means that there is no rotation about the 
symmetry axis or unique axis. 

Eq. 3.47 shows that the rotational energy depends upon the K~ terms. So the anticlock 
wise or clockwise rotation (i.e., the +ve and -ve,wdues of K) will have same value for 

K~ or energy. Thus, the levels corresponding to  and an will be degenerate. 

The selection rules for th'e rotation of such molecules are 

The selection rule of A K comes from the fact that there is no dipole moment about 
the symmetry axis (rotation about which is represented by K), hence electromagnetic 
radiation cannot interact with the rotation about this axis. Hence, it is expressed as 
AK=O. 

If we apply the above selection rules to Eq. 3.47, we get 

- - 
v(J+~,K)-V(J,K) = [B(J+ l ) ( J+  2) + (A-B)K~I-[(BJ(J+ 1) + (A-B@I 

= 28 (1 + 1) cm'l ... (3.50) 

where J = 0, 1, 2 ............... 

You can see that K is not reflected in the final equation for rotation and Eq. 3.50 is 
similar to expression for ti obtained for the rotation of linear mol&ules. 

Similar to the case of linear molecules, the centrifugal distortions due to non-rigid 
nature of real molecules are taken care of by incorporating an additional term in the 
energy expression as given below in Eq. 3.51: 

Thus, we could take the case of symmetric top molecules to be similar to that of linear 
molecules. The same procedure can be used for calculating B and I and bond lengths 
for symmetric top-molecules as done earlier for linear molecules. But here, there will 



be a diffcrcnce in the obser\,cd spectrum for .\ynlmctric top molecules as far as the 
splitting of rotational lines is concerned. Since each value ofJ is associated with 21 + 1 
values of K and the levels corresponding to + K  and -K being degenerate. This leads to 
the fact that the spectral line assuciated with a particular level will be split into J + 1 
components. Thus,,thc following splitting pattern bc observed. 

Rolallonal Spectra 

- 
whcn, J K L! (from Eq. 3.51) 

Thus, the spectrunl obtilincd will look likc as shown below in Fig. 3.12. 

/ 

K=2 

328 + (A*) 

K=2 
; J=4 :i! ;,,:TI K=2 \a , /' 

J=4, K=O '128 + 4 (A*) 
ZOB P3 

J=3, K=l K=2 
'=I 

J=2 fa* 4W-a) 

J=3, K=O ,,a-x' i 
J=2,K=1 a / 

68 +(A*) 

J=2. K=O 68 ,,/*';=I, K= 1 48 
Yl + (A*) , 

Plg. 3.12: (a) Rotntbnal energy Ievcb mf pmlmlc cymmetrlc lop molecules 
(b) Spllttlng of relational c p u h d  lines for symmelrlc top molecules 

Remember that no such splitting was observed for linear molecules. In other words, by 
studying the spectra, you can know whether a certain molecule is of linear type or of 
symmetrical top type. 

The analysis of rotational spectra of last class of molecules, i.e., Asymmetric top 
molecules is quite complex and a general expression for energy cannot be written for 

~~~~~~e~~~~ ;!'"'''L~~~~ 
them. Each molecule of this class requires individual treatment. In this course, we will ,,ll,, , of (J + 
not go into the details of analysis of rotational spectra for this kind of molecules. lines. 

In the next section, yoli will study about the intensity of spectral lines. 

3.7 POPULATION OF ROTATIONAL ENERGY LEVELS 
AND THE INTENSITIES OF SPECTRAL LINES 

According to the selection rule, all those transitions where A J = 2 1  are possible. It 
has been shown by calculations that the probability of all such transitions is the same. 
However, this does not mean that all the transitions will have the same intensity. 
Although the chances of a molecule going fiom J = 0 to J = 1 is the same as 
J = 2 to J = 3, yet the intensity of the two lines may differ. This is so because the total 
number of molecules initially present in J = 0 will be different from the molecules 
present in J = 2. The larger the number of molecules present in a particular state, the 



WC-ccpbmd Ra.(ioml IarprwiII be the chances of transitions to thc next state and hence greater will be the 
spcctn intensity. 

The population of thc cncrgy state dcpends on (1) Boltzmann distribution and (2) the 
dcgeneracy of thc state. 

Boltzmann distribution can be expressed as, 

whcrc, NJ = number of molecules in any state 

N,, = number of molecules in the lowest level, i.e., 

/ = o  
E j  = energy differcnce between the two statcs 

k = Bobzmann constant 

T = tempcraturc in Kelvin 

Eq. 3.52 can be rcwrittcn as, 

One thing is clear from Eqs. 3.52 and 3.53 thirt the ~lclllulaticln of ilil'lkrcnt slates kccps 
on decreasing in an exponential manner as we kccl~ on incrcasing tlic / valuc. 

Howcver, there is another factor-the degeneracy of the slntc tvhich will affcct the 
population. We shall not discuss the origin and numhcr of such dcgcncrate statcs, 
except to emphasise that degeneracy of a state incrcascs thc ~ w l ~ ~ l a t i o n  of a pnrtieular 
energy state. 

The net result of the two factors is that the population rises to a nlmimum and then 
decreases as / value increases. The band with maximum intensity is given by, 

SAQ 4 

Calculate the relative population of first two rotational energy levels for HCl at 
300K. Use B = 10.49 cm-' 

3.8 SUMMARY 

In this unit, you learnt about various types of energies associated with m e r e n t  kind of 
molecular motions. Rotational motion was the one in which were interested in. In this 
context, the terms moment of inertia and angular velocity were explained. Then, the 
rotation of a rigid diatomic molecule was discussed in detail. The energy levels 
associated with such molecules were considered which in turn were related to the 
observed rotational spectra. 

The applications of rotational spectra study were highlighted. The case of non-rigid 
molecules was also explained. This was followed by the discussion of rotational spectra 



of polyatomic molecules. In this class, linear, spherical and symmetric top molecules 
were discussed. 

Lastly, the relationship between the intensity of rotational spectral lines with 
population of rotational levels was described. 

3.9 TERMINAL QUESTIONS 

1. Using ml rl = m2 r2, derive r2 = m1r 

(m, + m2)' 

2. Calculate the energy in terms of G of the energy level corresponding to  J = 7. 

3. What is the selection rule for a rigid diatomic molecule to show rotational 
spectrum? 

4. Which of the following molecules will show rotational spectra? 

O = C = O ,  HF, N2 

5. If the rotational constant ior H 3 S ~ ~  is 10.59 cm-l, what is the value of 

rotational constant for 2~ 3 5 ~ ~ ?  

Use mass of 3 S ~ ~  = 58.06 x 1 ( ~ ~ ~  kg 

mass of 2~ = 3.344 x kg 

mass of 'H = 1.673 x kg 

3.10 ANSWERS 

1. From Eq. 3.26, a decrease, in moment of inertia will lead to an increase in the 
energy of the rotational level. 

2. It should possess a permanent dipole moment. 

= 5.007~ 

N J  For J=0 ,  - = I  
No 

Rotatioari Spectra 
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