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1.1 INTRODUCTION

Problem-solving is an essential aspect of scientific study in general and of physical chemistry
in particular. It is possible that some of us are ‘afraid’ of equations containing physical
quantities. This fear is mainly due to the mathematical clothing of such equation. To dispel
this fear, first of all, we have to understand how to represent one single physical quantity in
terms of its magnitude and units. This will help us to handle with comfort and confidence, an
equation containing many physical quantities. Here we shall study the principles of
representing the units of the physical quantities.

Till recently in the scientific world, mainly two systems of units had been in common use.
One is c.g.s. (centimetre, gram, second) which was more commonly used over the European
Continent and the other is f.p.s. (foot, pound and second) prevalent in England. A common

_ system of units helps in exchanging the scientific facts and ideas originating from different
countries. It is better still if the system of units could be derived from the scientific formulae
or fundamental constants. This long felt need for a common system of scientific units was
realised at a meeting called General Conference on Weights and Measures in 1960. At this
meeting, the international scientific community agreed to adopt common units of
measurements known as Interndtionﬁgystem of Units. This is abbreviated as S} units from
the French name, Systeme Internationale.

In this unit, we shall first state the SI units for a few basic and derived quantities. Then we
shall explain the prefixes used to.change the order of magnitude of the SI units. Also we
shall state the rules for representing the SI units and the procedure for converting non-SI
units into SI units.

Objectives

After studying this unit, you should be able to :
® explain the need for SI units,
® state basic and derived SI units,
@ derive the dimensions and the SI unit of a physical quantity using an appropriate
equation, ,
® explain how the multiples and the submultiples of SI units can be obtained,
®  describe the rules for writing SI units, and
‘®  convert non-S| units into SI units.

1.2 BASIC UNITS

There are seven basic physical quantities, from which all other physical quantities can be
derived. The ufits of these basic physical quantities are called basic units. The names of
these quantities along with their symbols, SI units and the symbols of SI units are given in
Table(% 1. Each of these seven quantities is regarded as having its own dimension. The

dimegsions of basic quantities are ugeful in defining the derived physical quantities, which
L We shall study in Sec. 1.3. W will be using the symbols given in column (ii) of Table 1.1 to
refer to the dimensions of the basic quantities.
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Note that m (italicised) is the symbol
! for mass of an object, while m

(roman) is the symbol of SI unit.
metre,

Table 1.1 : Basic Physical Quantities and Their SI Units

Physical Quantity Symbol of the quantity ~ Name of the SI Unit Symbol of the SI Unit
By o G . . Gij) (iv)

Length : ! metre : m

Mass m kilogram kg

Time ' t second s

Electric current ampere A

Temperature T kelvin K

Luminous intensity I candela cd

Amount of substance , n mole mol

We are not going to define kilogram, metre etc., since our aim is t0 use these units and not
to establish the basis of these units.

1.3 DERIVED UNITS

All other physical quantities are regarded as being derived from the above seven basic
quantities by definitions involving multiplication, division, differentiation and integration.
Such quantities and their units are called derived physical quantities and derived units,
respectively.

In Tables 1.2 and 1.3, the derived SI units without and with special names are given. You
will find it useful, throughout your study of chemistry, to refer to these tables whenever
some physical quantities are to be expressed. The units of some magnetic and electrical
quantities were discussed in Unit 6 of Atoms and Molecules course. Since electrochemistry
will be studied in Block 4 of this course, a few useful electrical quantities are also included
in Table 1.3.

Table 1.2 : Derived S1 Units Without Special Names

Physical Quantity Definition Dimensional formula Name of the S1 Unit  Symbol of the SI Unit

(0] - (i) (iti) ) w
Area* Length X length ¢ square metre m’
Volume* Length X length

X length P cubic metre m’
Density Mass/Volume mi” kilogram per cubic metre kgm™
Velocity Displacement/Time i’ metre per second 7 ms”
Acceleration (Change in I’ metre per second squared ms”
-velocity)/Time
Molar mass Mass/ Amount of the mn! kilogram per mole kg mol ™
substance

* The definitions given for area and volume are of general type, although specific formulae are to be used
depending on the geometry of a surface or an object.

Table 1.3 : Derived SI Units Having Special Names ki
Physical Quantity - Definition Dimensional Nameof the  Symbol of the
' formula SI Unit _ S1 Unit
- @) ' ‘ (i) (ili) @iv) . v
Force Mass X acceleration mif? newton Korkgms?
Force ~2 72 ¥
Pressure : mit /1 pascal PaorNm’*
Area. =mi'r? orkgm s*
Energy or Work Force X distance mit 1 joule - JorNmor Pam'
= mi’f? orkgm’s” |
Electric charge‘ Electric current X time It coulomb CorAs
) Electrical energy mi’t? .
Electric potential difference —El-——— 3 volt VorlC .
ectric charge ’, orkgm’A's”?
= mE T




Physical Quantity Definition Dimensional Name of the  Symbol of the
formula SI Unit S1 Unit -
@ (ii) (i) (iv) )
(Electric potential difference) mltr' e .
Efectric resistance - I ohm florVA™
Electric current or kg m* A5
=miI"¢?
1 l . o
Electric conductance —_— o siemens SorAV
(Electric resistance) m ! o Al kg—l m?
=P emt 7
(Number of waves or cycles) 1 -
Frequency e T hertz Hzors

Fro_in Tables 1.1, 1.2 and 1.3, you can find a direct correspondence between the dimensions
-of a physical quantity and the symbol of its SI unit. For examble, see how from the
dimensions of acceleration, its SI umt has been worked out below :

Dimensions of acceleration = {¢* [column (iii) of Table 1.2]

Units of acceleration = m s 2 [columns (i) and (iv) of Table 1.1]

Let us see how the dimensions and the units of a physical quantity can be obtained using
Tables 1.1-1.3.

Deduction of the SI Unit of a Physical Quantity

We can derive the dimensions and the units of a physical quantity, provided a mathematical
relationship is available between this physical quantity and other physical quantities of
known dimensions. Suppose we want to find the dimensions and the anits of the gas
constant, R. The mathematical relationship to be used for this is the ideal gas equation

(Fq. 1.1), which we will study in Unit 2.

Pressure X volume = Amount of the substance X gas constant X temperature «(1.1)
Rearranging this,

Pressure X volume
Amount of the substance X temperature ()
The dimensions of the quantities in the right hand side of Eq. 1.2 are mentioned in Tables
1.1-1.3. We use the dimensions of these quantities-to derive the dimensions and the units of
R as shown below : .

Rl:

Pressure X volume
Amount of the substance X temperature

Dimensions of R = Dimensions of

_ ml;-t]'ql _ (r{tlzt'z)(n'l)(T‘l)

Hence, the units of R = joule mole " kelvin™
(using the units corresponding to the dimensions mentioned in Tables 1.1-1.3).

Thus, R has the dimensions of (energy) (amount of the substance) ' (temperature) ' and the
units, J mol ' K™

In general, the following hmts would be useful in-the deduction of - the unit of a quantity
(which we name as test quantity) :

i) Write an equation relating the test quantity to other quantities of known dimensions.

ii) Rearrange this equation such that only the test quantity is on the left hand side and
others are on the right hand side.

iii) Substitute the dimensions of the quantities on the right hand side and simplify.

iv) Write down the units corresponding to the simplified dimensions, using Tables 1.1-1.3.
Use the above hints and work out the following SAQs.

SAQ1
Derive the dimensions and the units of root mean square speed (u.m;) of a gas using the
following €quation :

Units and Dimensioas
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Prefixing of SI units helps in
expressing.a physical quantity, large
or small, as a convenient number,
Example:7.4X 10" m
=74X10"m
=74 pm

10

3 X gas constant X temperature
Molar mass

Urm, =

The dimensions of molar mass are mn'.

SAQ2

From the equation, Kinetic energy = 1/2 X mass X (velocity)’, derive the units of kinetic
energy.

‘1.4 SI PREFIXES

We now discuss how to overcome the difficulty of expressing the units of physical
quantities, which are either very large or small, as compared to the SI units. We add a
prefix to the SI unit such that the magnitude of the physical quqnmy of a substance can be
expressed as a convenient number.

For example, the bond distance in hydrogen molecule is 7.4 X 10™''m. We express it ’
conveniently as 74 pm where pico is the SI prefix and p is its symbol. The list of SI prefixes
is given in Table 1.4 and it is possible to change the order of magnitude of any unit using
this Table. ' '

Table 1.4 : SI Prefixes

Submultiple Prefix Symbol Multiple Prefix Synibol
10 deci d 10 deca da
107" centi c 10° hecto h

10° milli m 10" kilo_ k

0° ‘ micro u 10t mega M

10’ ©pano n 10° giga G

10" pico P 10" tera T

10" femto f 10" peta P

10" atto a 10" exa E

More examples for usage of prefixes are given below :
10'm = 1 km; 10°s = 1 ns

The unit for mass is kg which is already prefixed. We do not add a second prefix but rather
use a single preﬁx on the unit gram. Thus, to represent 10~ gram, the symbol used is ng and
not pkg. For 10~ gram, mg is used and not ukg.

SAQ3
Write down the following with proper SI unit symbols and prefixes :

(a) 10 metre (b) 107" second (c) 10 pascal

.............................................................................................




SAQ 4
Suggest a convenient SI unit to specify the diameters of atoms and molecules which are in
the region of 10 'm

1.5 GRAMMATICAL RULES FOR REPRESENTING
-THE SI UNITS

The following rules would be of immense help to you while using SI units :

i) The symbol of a unit is never to be used i in plural form. Writing 10 kilogram as 10 kg
is correct but not as 10 kgs

ii) In normal usage, full stop is used to indicate the end of a sentence or the presence of an
abbreviation. To denote SI unit as an abbreviation by means of a full stop after the"
symbol is incorrect; but if the SI unit is at the end of a sentence, then the full stop can’
be used.

1ii) When there is a combination of units there should be a space between the symbols. If
the units are written without leaving any space, the first letter is taken as a preflx Thus,
m s represents metre second whereas ms stands for millisecond.

iv) Always leave a space between the magmtudeand the unit symbol of a physical
quantity. For example, writing 0.51 kg is correct but not 0.51 kg.

v) Symbol of the unit derived from a proper name is represented using capital letters but
not the name of the unit (Table 1.3). For example, writing 100 newton or 100 N is
correct but not 100 Newton or 100 n.

vi) For numbers less than unity, zero must be inserted to the left of the decimal point.
Thus, writing 0.23 kg is correct but not .23 kg.

- vil) For larger numbers exceeding five figures, one space after every three digits (counting
from the right end) must be left blank. Commas should not be used to space digits in
numbers. For example 15 743 231 is correct but not 15,743,231 N. It is preferable
to use proper SI prefixes.

viii) The degree sign is to be omitted before K while representing temperature. For example.
298 K is correct but not 298 °K. :

ix) You should not mix words and symbols for representing SI units. For example, it is
proper to write N m or newton per square metre and not N per square metre.

x) Exponents (or powers) operate on prefixes also. Let us derive the relationship between
~ cm’ and m’ using the relation, I cm = 10 m.
lem®=(lem)’ = (107 m) X (107 m) X (107 m) =10 m’
Thus, 1 cm’ is equal to 107 m3 but not to 10° m’ or 10~ m’.

xi) To show that a particular unit symbol has a negative exponent, one may be tempted to
use the sign "/”, known as solidus. It i§ better to avoid the usage of this sign and if
used no more than one should be empféyed For example, l:epresemmg pascal (kg m~
s7%) as kg/m s’ is allowed but not as kg/m/s’. o

So far, we studied some rules for writing SI units. Let us now discuss the dimensions of
some mathematical functions which are useful in studying this course.

While representing the relationship among the physical.quantities of substances, we often
come across the mathematical functions like sin 6, ¢* and In x. It is to be kept in mind that
trigonometric (sin 6, cos 0, etc.), exponential (¢* or e~ *) and logarithmic functions ( In x or
log x) are dimensionless quantities and hence have no units.

You can understand the validity of this statement, once you recapitulate the definitions of ;
these functions. We shall illustrate this for the functions, sin 0 and e,

From the right-angled triangle PQO,

Units and Dimensions

Three no’s in SI units :
No plurals;

No full stops (cxcept at the end ot a

sentence);
No dashes.

In cm unit, ¢ (centi, 107%) is the
prefix of the unit, m (metre).

11
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length of PQ

length of OP

Evidently sin 0 is dimensionless and has no unit. The same is true of other trigonometric
functions also.

sin 6§ =

As an illustration for the exponential series, let us expand e*.
2 3 4
. x X x X
e ~1+F+ 2'+'3—"+4|+ .....
Since addition or subtraction must be done between quantities of same dimensions, 1, x, q(z,
x', ... etc., in the above series must all be of the same dimensions. This indicates that x and’

e are dimensionless and unitless. Again this is true of e “and In x or log x also.

SAQS A .
In Unit 5 of this block, you will study that Bragg equation,

nA = 2dsin @
is useful in the diffraction studies of X-rays by crystals. Given that n is dimensionless and A
has the dimension of length, find the dimension and unit of d.

1.6 CONVERSION OF NON-SI UNITS TO SI UNITS

Often in textbooks we see that the quantities are expressed in non-SI units such as c.g.s. and f.p.s.
In such a sitiation, we must know now to convert non-SI units into SI units. There is a
simple procedure available for this purpose. It is called unit-factor method. This method
can be explained using the following example.

An important practical unit of pressure is atmdsphere (atm). To be exact, at 2982 K a

_column of mercury, 76 cm high (2 = 76 cm), exerts a pressure of 1 atm. (Fig. 1.1).

Vacuum

|

h=76cmHg .
for one
atmosphere |.

Fig. 1.1 : The pressure of a columa of mercury 76 cm high inside the
glass tube (black arrow) balances the pressure of air (red arrow) on
the rest of the surfaces of mercury

The SI equivalent of 1 atm pressure can be obtained by substituting the values of 4, g
(acceleration due to gravity) and p{density of mercury) in SI units in the formula ;

P= hgp : : (1.3)‘

The values of g and p in c.g.s. units are 980.66 cm s * and 13.595 g cm ™, respectively. We
have to convert the values of 4, g and p into SI units, before substituting them in Eq. 1.3.
To accomplish this, we must know how to construct a unit factor.




Construction of a Unit Factor

A unit factor is a ratio that is equal to 1. It states the relationship between the SI and the
non-SI units of a physical quantity. 1t is constructed from the equivalence statement relating
both these units. For example, for the conversion of the unit of & from c.g.s. into SI units,
the equivalence statement s,

100 cm = 1 m.

From this equivalence statement, the unit factor for conversion can be constructed by
dividing both sides by 100 cm (i.e. equivalent value in non-SI unit).

100 cm o tm : :

00cm ' 100cm ‘ - (19)
In general, the unit factor for conversion of a physical quantity into SI unit is given by the
relationship :
SI unit of a physical quantity

.
, .
Unit factor = Equivalent amount of the physncal quantity in non-SI umt

Let us now see how the upit factor is useful in unit conversion.
. L ]

Coaversion into SI Unit

The unit factor is to be multiplied by the actual value of the physical quantity in non-SI
unit to get the quantity in SI units. For example, the value of h (actual value = 76 cm) is to
be multiplied by the unit factor, 1 m/100 cm to get it in metre unit.

Im
thIumt—~76cmXT(76—r—n———076m .

The. conversion of units of 4, g and p into ST units is represented in Table 1.5.

Tabte 1.5 : Conversion of Units of &, gand p

Physical . Symbol Equivalence Unit factor The actual value.of The quantity in SI unit(s)
quantity “statement(s} the quantity in -
nen-SI unit(s)
i) (i) (iii) ’ {iv) (4] (vi) = (v) X {iv)
. Im Im~
Height of h i00em=1m P 76 cm 76.cm X e =076 m
mercury 100 ¢m 7 ) ‘ 100 cm
column
. R Ims? A ) Ims~
Acceleration g 100ems™ = = 980.66 cm s 98066 cms * X ——
due to gravity lms” e § 100 cm 5™
X = 958066 ms"
' (kg) . (Am')y* L, 10'kgem’
Density of P 10'g = 1 kg and T Y TS 13.595 g cm™ 13.595 g cm ™ X LA
mercury 10" em’ = [ m™* (107g) (107cm) (g mg)‘
10 kgcm' . e
5 = 13595 X 10' kg m”®
lgm’

* (10 em) =19 cem' =1 m'
** Density = Mass/Volume

Unit factor for mass conversion

Unit factor for density conversion = - N
Unit factor for volume conversion

The values of 4, g and p from the last cloumn of Table 1.5 are to be substituted in Eq. 1.3
to get the SI equivalent of 1 atm pressure.

i€,p=10.76 m X 9.8066 ms* X 1.3595 X 10" kg m™’
=1.0132X 10’ kgm™'57° = 10132 X 10° Pa.

Hence, SI equivalent of ] atm pressure is 1.0132 X 10° Pa. Using the above illustration, we
can sum up the steps for the conversion of non-SI units of a physical quantity into SI units
as follows :

(i) Obtam the equwalence statement relating the SI and the non-<" units.

{ii) Construct the unit factor.

Units and Dimensicns

lkgm's?

lkgms?
_lmz
=1Nm’=1Pa

13
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(iii) Multiply the actual arﬁqunt of the physical quantity (in non-SI unit) by the unit factor.
Using the above procedure, attempt the follwing SAQ.

SAQ6
The value of the gas constant R is often expressed as 1.987 cal mol ' K™’ Obtam its value in
SI units (J mo! ' K''). Given that | cal = 4.184 J.

........................................................................................

1.7 SUMMARY

In the study of physical chemistry we come across many physical quantities. Confusion may
arise in choosing the proper units for a particular quantity. We can overcome this difficulty
by using SI units consistently. In this unit, we have discussed the basic and the derived units
of SI system. The steps to be followed in deriving the dimensions and the units of physical
quantities are explained with examples. The rules for representing.the SI units of quantities ,
have also been stated. The method of converting non-SI units into SI units has been explamed
using an illustration.

1.8 TERMINAL QUESTIONS

1. Examine the following statemients and indicate their validity by writing T for true or F
for false; if false, indicate the reason.

i) The SI unit of mass is gram.

ii) The symbol of SI unit of temperature is k.
iii) The SI unit of pressure is pascal.

iv) IN=1kgms?

v) 10 gram = | pg.

2. 1f25.3 g of a substance occupies a volume of 23 cm’, calculate its density in SI units.

3. The molar mass (Mn) of an ideal gas is related to its pressure (p), density (p) and
temperature (7), according to the equation,

RT : o ]
M, = pp .In this expression, R is the gas constant. Find the SI unit of molar mass.

4. The reduced mass (u) of two objects of masses m, and m: is given by the formula :
— ml m2 .
B m + mo)
What is the unit of reduced mass?

5. Complete the following conversions :

a) Img= ... ~KE = g
b) Is= ... ms= . ns

¢) lkm= ... m= ....... mm

1.9 ANSWERS

SeM Assessment Questions
1. Dimensions of ums

= Dimensions of \/ gas constant X temperature

- Molar mass
=/ mI.zfzn_'T;'.T

mn "




_ Units and Dimemﬂol‘ll~
= Fit=1t L
Hence u.m; has the dimensions, ' and the units, ms™'.
Kinetic energy has the unit, J.
(a) nm (b) ps (c) kPa.

107" m = 10? pm; hence pm unit can be used.

“wo e LN

Since 7 and sin @ are dimensionless, d has the same dimension and unit as A; its
dimension is / and its unit is metre (m).

6. Value of R in SI unit = The value of R in non-SI unit X unit factor
. 4.184 ]
1 cal

= 1.987 cal mol”' K™' X

= 8314 Jmol" K.

Terminal Questions
1. i) F; (the SI unit of mass is kilogram)
i) F; (the symbol of SI unit of temperature is K)
i) T
iv) F; 1N = 1 kg ms (a blank 'space nceded between m and s )
v) T ’

1kg

0 253 X 102 kg

2. Mass in ST unit = 253 g X

1m’ _
Volume in SI unit = 23 cm® X loﬁ—mg =23X 10" m’

cm
Mass 253 X 107 kg

—— 3 -3
Volume 23 X 10°m® 1.1 X 10° kg m™,

Density =

Dimensions of p, p, R and T are ml™, ml™'t*, mI’t *n"'T™" and T, respectively.
) ) RT
Dimensions of M, = Dimensions of L]
_ mYmP ' THT
mi'r?

~1
=mn .
Hence, the dimensions and the symbol of the SI units of molar mass are m» ' and
kg mol ™, respectively.

4. The unit of reduced mass is kg.

5. 2a) Img=10%kg=10"g
b) 1s=10"ms=10ns
¢) lkm=10"m = 10° mm.
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2.1 INTRODUCTION

Matter exists in solid, liquid or gaseous state depending on temperature and pressure. A
familiar example is.the compound H>O, which can exist as ice; watei or steam. The study of
the gaseous state is the easiest as gas laws take a simple form at low pressure and high
temperature. However, these laws are not valid at all temperatures and pressures. Also-the
range of validity depends on the nature of the substance itself. In a gas, the molecules on the
average are separated by large intermolecular distances and at such distances, interactions
between these molecules are very weak. This is not so in solids and liquids. Hence, the
molecules in a gas have greater freedom of motion. As a result of this, they move about
randomly and tend to occupy the maximum space available to them. Hence, gases have no
particular shape or volume. Another consequence of their random motion is that each gas
molecule collides with other molecules and also with the walls of the container. The
constant bombardment against the walls of the container manifests itself as the pressure

- exerted by the gas.

This unit provides a molecular interpretation for the properties of gases. We shall start with
a recapitulation of the gas laws. Then we shall explain the use of ideal gas equation in
calcufating the pressure volume, temperature and amount of a gas. The postulates of the
kinetic theory of gases will be explained and used in deriving an equation which is useful in
calcu]atir‘fg the parameters such as pressure, average kinetic energy etc. of the gas molecules.

e o

The distribution of molecular speeds and the dependence of molecular speeds on
temperature will also be discussed. Finally the equations for calculating the collision
number and the mean free path will be derived.”

In this unit, the behaviour of ideal gases shall be discussed. In the next unit, the deviation
from ideal behaviour and the behaviour of real gases shall be taken up for discussion. Many
of the expressions derived in this unit would be useful in studying the units on chemrcal
,equilibrium, solutions and chemical kinetics.




Objectives Kinetic Theory of Gases

After studying this unit, you shall be able to :
state the gas laws and derive the ideal gas equation,

® calculate one of the unknowns amongst pressure, volume, temperature or amount of a
gas using the ideal gas equation,

® state Dalton’s law of partial pressures and Graham’s law of effusion,

. . I -
- ®  derive the equation pV = 3 mNu?,

explain the distribution of molecular speeds,

calculate the most probable speed, the average speed and the root mean square speed,
state and explain the principle of equipartition of energy,

derive an expression to calculate the collision number betwcen gas molecules, and
calculate the mean free path of molecules.

2.2 RECAPITULATION OF THE GAS LAWS

Some of the earliest measurements on pressure, volume and temperature (p-V-T) were
made on air at atmospheric pressure and room temperature. Fortunately, under these
conditions air nearly behaves as ideal gas. This helped a lot in the formulation of the gas
laws. You would have studied Boyle’s law, Charles’ law and Avogadro’s law in your
previous classes. We shall recapitulate these gas laws after stating the units of pressure,
volume and temperature.

. Pressure : The S! unit of pmssure is pascal (Pa). Its equivalence with other units of pressure
are as follows : v

I standard atmosphere = 1 atm = 760 mm Hg = 760 torr
= 1.0132 X 16° Pa = 1.0132 bar.

Volume : The SI unit of volume is cubic metre (m). Other equivalent units are given
below : ;

m’ =10’ dm’ = 10°L = 10° cm’
In the above expression ‘L’ stands for litre.

Temperature : The SI unit of températuré is kelvin (K). To convert temperature from
celsius scale into kelvin scale, 273.15 is to be added to the former.

Let us now state the gas laws.

2.2.1 Boyle’s Law

It states that at constant temperature, the vol ume, ¥, of a fixed mass of gas varies mversely
as its pressure, p.

l .
e, Vo— (21
. @1
orpV =K, ' «(2.2)
Here K is a constant at a given temperature for a fixed amount of the gas. This type of ‘ A gas that obeys Boyle’s law is
behaviour of a gas is shown in Fig. 2.1 at two different temperatures. Such a plot at called an ideal gas.

constant temperature is called an isotherm and it resembles a hyperbola,
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~ -Avogadro number is equal to

6.022 X 10** and has no units.

Avogadro constant is equal to
6.022 X 10”’ mol™'

2.2.2 Charles’ Law

It states that for a certain amount of gas at a constant pressure, its volume (V) is directly
proportional to its absolute temperature (7). '

ie, Vo T _ .. (2.3)
or V=KT .. (24)
where K is a constant for a given pressure and amount of gas. This law is also known as

Gay-Lussac’s law. Fig. 2.2 depicts the variation of volume with temperature at constant
pressure. Such a plot is a straight line and is known as an isobar.

T / K
Fig. 2.2 : 1sobars at p, and p,

2.2.3 Avogadro’s Law

* It states that equal volumes of all the gases contain equal number of molecules under the

same conditions of temperature and pressure. In other words,

VN -~ (2.5)

where N is the number of molecules in a volume ¥. But the number of moles (n) is related

to the number of molecules (N) as per the equation,

£ - @56
=N . .. (2.6)

where Na is Avogadro constant (6.022 X 10% mol ™). Using Egs. 2.5 and 2.6, we can s:ate

that at constant temperature and pressure,

Van - 2.7

That is, at constant temperature and pressure, the volume of a gas is proportional to the
number of moles of the gas. In other words, equal amount of two gases would occupy same
volume at the same temperature and pressure.

Using the above gas laws, we can arrive at the ideal gas equation.

‘2.3 EQUATION OF STATE FOR IDEAL GASES

By combining Egs. 2.1, 2.3 and 2.7, we obtain the combined gas law i.e.,

nT
Vo — : - (28
’ v ’ | (2.8)
orpV = nRT . ; _ : - (29

where R is the'gas constant.

Eq. 2.9 is known as the equation of state for an ideal gas. The state of the gas is its
condition at a given time. A particular state of a gas is described by its pressure, volume,
temperature and the amount. Knowledge of any,three of its properties is enough to define
completely the state of the gas, since the fourth property can then be determined using
Eq. 2.9. .




Let us now discuss the units of R.

Units of R

In Sec. 1.3 of Unit 1, you have studied that R has the dimensions of (energy) (amount of
substance)”! (temperature)”'. In SI units, the value of R is 8.314 J mol™! K™! and.we will
be using this value throughout this course.

The values of R in different units are given below :
R=28314Jmol ' K

=8.314 X 10" erg mol ' K™

= 1.987 cal mol ' K"

= 0.08206 L atm mol ' K™

Calculations Using Ideal Gas Equation

Eq. 2.9 is useful in calculating any of the unknowns amongst pressure, volume, temperature
or the amcunt of gases from three of the other known quantities. Let us illustrate this by
calculating the volume occupied by 0.0660 kg of carbon dioxide gas at a temperature of
300.2 K and a pressure of 9.41 X 10 Pa assuming ideal behaviour.

Mass of carbon dioxide

Molar mass of carbon dioxide

Number of moles of carbon dioxide (n) =

_ 0,060 ke
0.044 kg mol™"
Substituting the values of different quantities in ideal gas equation, we get
nRT '
V=—
P
0.0660 ‘ ) * ) %
mol| X 8.314 Jmel ' K™ .
( 0,044 ) 8314 Jmel  K™) X (300.2 K)
941 X 10" Pa
= 0.0398 m’
Using the ideas developed above, attempt the following SAQ.
5A014

alentate she density of oxygen gas at 273.2 K and 1.013 X 10” Pa, assuming ideal
] i

= Wass/ Molar mass

...........................................................

SAQ 2 .
How many molecules of oxygen are present in 03032 kg of the gas?

24 DALTON’S LAW OF PARTIAL PRESSURES

Dalton’s law of partial pressures states that at constant temperature, the total pressure

" exerted by a mixture of gases behaving ideally, is the sum of the pressures exerted by the
individual gases occupying the same volume alone. The individual pressure of a gas in a
mixture of gases is called its partial pressure. The essential condition is that the gases should
not react chemically.

Kinetic Theory of Gases

-

1] lkgm’s?
1Pa  lkgm's?

=tm’

1]
Also — =
sol‘mj. 1 Pa
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States of Matter Mathematical form of Dalton’s Law ,
Let us consider three ideal gases, A, B and C. Let the pressure of each gas be 2. P, and p, .
respectively when each of them is kept separately at a temperature T and volume V. Let us
force these gases into a vessel of volume V at the same temperature. According to Dalton's
law of partial pressures, the total pressure (p,) is given by,

g; p‘sz+pB+pC .(2.10)
| Using Eq. 2.9 for each of the gases, we can write
na RT
Pa= - - (21D
nsRT
Dy = % - (2.12)
- ncRT
and p, = — 7 - (2.13)
Using Eqgs. 2.10 to 2.13, we can write,
RT RT
p=(na+ns+n)— = "—V— . (2.18)
where n, = total number of moles in the mixture of gases‘= na+ ng + nc
Dividing Egs. 2.11 to 2.13 by Eq. 2.14 and rearranging we get,
n :
Pa=—=p, - (2.15)
n .
ng ‘
Ps =P, . (2.16)
n
n
and p. = — p, : - (217)
n
This law will be useful in studying The terms A ] s and e are called the mole fractions of gases A, B and C, respectively
the liquid-vapour equilibria ne m m
liscussed in the unit on solutions. and are represented as xa, xg and xc.
Thus the Egs. 2.15 t0 2.17 can be rewritten as, k
Pr=Xap, : . (2.18)
Py = X8 D, .. (2.19)
Pp = Xe p, . 12.20)

In other words, the partial pressure of a gas in a gaseous mixture is given by the
product of its mole fraction and total pressure.

Using the above principles, attempt the following SAQs.

SAQ3

2.00 mol of nitrogen 1.00 mol of oxygen and 2.00 mol of methane are kept in a vessel of
volume 0.0600 m’ at 250.2 K. Calculate the total pressure of the mixture of gases and the
partial pressure of the individual gases using Dalton’s law ot partial pressures.

SAQ4




2.5 GRAHAM’S LAW OF EFFUSION

Effusion is the passage of a gas through a small opening into an evacuated chamber.
Graham’s law states that the rates at which gases effuse are inversely proportionai to the
square root of their densities or molar masses under similar conditions of temperature and
pressure.

If r, p and M., are the rate of effusion, density and molar mass of a gas, then

then » !
o —=
Vo

or

(221

i

F o
V Maq ‘
If two gases with molar masses M,,; and M. have densities o; and p», then their rates of
effusion r, and r,, under same conditions of temperature and pressure, are related as,

U =
" | 7 (27.23)
Using Eq. 2.23, answer the following SAQ.

SAQS
What is the ratio of effusion rate of hydrogen to oxygen?

.. (2.22)

..............................................................................................

..............................................................................................

2.6 KINETIC THEORY OF GASES

The gas laws discussed so far were arrived at on the basis of experimental work. The kinetic
theory of gases put forward by Maxwell (1860) and Boltzmann (1867) provides a theoretical
explanation for the properties of gases. Let us first go through the following basic assumptions-
of the kinetic theory of gases. -

1) A gas is composed of a very large number of tiny molecules. The gas molecules are far
apart from one another in comparison with their own dimensions. The gas molecules are
considered as small hard spheres. Their volume is negligible compared to the total volume
occupied by the gas.’

2) The gas molecules are in a state of constant random motion, i.e., they move in all possible
directions with different speeds.

3) During their motion they collide frequently with each other and with the walls of the
container. These collisions are perfectly elastic, which means that the kinetic energy of the
molecules before and after collision is the same.

4) There are no intermolecular forces between the molecules; i.e., there are no forces of
attraction or repulsion between them.

5) The pressure exerted by the gas is due to the force exerted on the wails of the container
due to non-stop bombardment of the molecules.

6) The absolute temperature of a gas is proportional to the mean kinetic energy of the
molecules present in it.

We shall use these assumptions in the next section. Let us now discuss some of the features
regarding molecular velocities which will be required for deriving the equation of state for the
gases.

2.6.1 Resolution of Molecular Velocities

Velocity (u) is a vector quantity. The components of u in the x, y and z directions are u,, u, and
u,. The speed u is the magnitude of the vector u and the latter is represented by OC (Fig. 2.3).

Kinetic Theory of Gases

Some authors mention this law as
the law of diffusion which is not
quite exact, since diffusion is the
transfer of material under a
concentration difference.
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The bar in u’ represents the average
of the 4° values.

X

Fig. 2.3 : Components of velocity, u

The lengths OA, OD and OE represent the velocity components uy, 4y, and .. Hence, note
that OC = u

OA = DB = u,
OD = AB = u,
OE=BC =u,

BC is perpendicular to xy plane (shaded). Since OB is in xy plane, BC is perpendicular to
OB. Hence, /OBC = 90°

From the right angled triangle OBC, «* = OC’ = OB’ + BC? = OB’ + 3.

You can see from the diagram that OD is on y axis. Since DB is parallel to x axis, DB is
perpendicular to OD, i.e., ZODB = 90° 3

In the right angled triangle ODB, OB’ = OD’+ DB’ = uf. + u?
LW =OB +ul=uh +uy + ul - (224)

It is important to note that u is a vector. The speed u and the velocity components u;, u,

. and u; are scalars. A velocity component like u, can be positive, negative or zero

(corresponding to motion in the positive x direction, motion in the negative x direction or
no motion in the x direction), but 4 must be by definition positive or zero.

2.6.2 Mean Square Speed

All the molecules do not move at the same speed. As a result of this, x components of the
velocities of different molecules are different. This is also true of y components and z

components of the velocities. If ul,, u3,, 4, .. . .. U’y are the square of the x components
of the velocities for the molecules, 1,2, 3, . . .. N, then the average of these values, «2, is
given by,

2 2 2 2
;3 - (uix + usx + u;xN+ ..... + unx) .. (225)

For ;i and 12 also, the expressions similar to Eq. 2.25 can be written. Further, similar to_
Eq. 2.24, the average of the square of the molecular speeds, «’, is related to 3, u’ and .’ as,

W =u o+ .. (2.26)
The quantity u’ is called the mean square speed. Since the gas molecules are in random

motion, no particular direction is preferred. The quantities, us, ui'and i are equal. Hence,

2

=u=u=us3 - (227)




The above equations will be helpful to you in understanding the derivation described in the Kanetic Theory of Gases
next section.

2.7 DERIVATION OF THE EXPRESSION FOR
PRESSURE

Let us consider a cubical container with side I filled with N gas molecules, each with mass
‘m’. Let us assume that one of the malecules moves in the x direction with velocity component
uix (Fig. 2.4). It will strike the wall at the yz plane (shaded face) with momentum mu,, and

- will suffer an elastic collisicn so that it bounces back with a momenfum — mu;,.

z
[

Fig. 2.4 : motion of a gas molecule.
X

The change ip momentum of the molecule'in one collision is, muix ~— (— muix) = 2 muy. We consider the momentum change
This molecule has to travel a distance of 2/ before it collides with the shaded face again. The along x axis only.
time required for the next collision can be calculated as follows :

The molecule travels a distance of u1. in one second. Hence, to travel a distance of 2/, the time

required = 2 second. That is, the time interval required for each successive collision with

Ix {
the shaded face is 2//u1, second. Hence the number of collisions between the molecule and the
shaded face taking place in unit time will be the inverse of the above expression, i.e., u1./21.

The change of momentum in Change of momentum per number of collisions a
one second (or rate of change = molecule per collision X molecule undergoes in one
of momentum) per molecule second
u '
= 2muy, X 2;
_ muix
/

As per Newton’s second law of motion,
force = Rate of change of momentum

2
Rl x

Hence force due to collisions by one molecule = ] l - (2.28)
Similarly we can derive expressions for the force exerted by second, third .. . .. N*
molecule over the shaded face. ;
The total force (#) exerted by N molecules over the shaded face can be calculated as
follows: ’
F= -’;i [l + s + 5, + .. ... + u] - (2.29) 23
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R is the gas constant for one
mole and k 1s the gas constant
for one molecule.

24

= % N2 (using Eq. 2.25)

Using Eq. 2.27,
mN 12
3
But pressure (p) is force per unit area (A4). The area of the shaded face is /

p=f F _ mNi _ mNw

F=

4 7 3L T
Since for a cube, volume (V) = P,
mNu?
p=" - (230)
l —
LopV = ?mNu2 «(231)

We shall use this equation in the next section for calculating the average kinetic energy,
number density, concentration etc. of the gas molecules.

2.8 IDEAL GAS EQUATION

Although all the gas laws could be derived from Eq. 2.31, we shall derive the ideal gas
equation only and then proceed to calculate different molecular parameters.
Eq. 2.31 can be rewritten as,

pV= 3N( % mu ) : - (2.32)

3

From the kinetic theory of gases (postulate 6) it is known that the absolute temperature of a
gas sample is directly proportional to the mean kinetic energy of the molecules, i.e.,

1 L
Toc?mu2

or % mu* =K,.T - (2.33)
where K is a constant.

Substituting this in Eq. 2.32, we obtain,

2
pV'=3 NK.T - (2.34)
This can be written as
pV = NKT . .. (2.35)

Where , known as Boltzmann constant is equal to 2/3 K. The value of k is
1.38 X107 J K™'. Eq. 2.35 is the ideal gas equation for N molecules. For a gas having
nmoles, tne number of molecules N is given by,

N = nNa - (2.36)

where N, is Avogadro constant and it is equal to the number of molecules (or species) in
one mole of a substance. It is equal to 6.022 X 10" mol™'. Hence the equation for # moles
of the gas can be written by vsing Eqs. 2.35 and 2.36.

pV = nN kT = nRT .. (237
where R is equal to Nak. Eq. 2.37 is the same as Eq. 2.9 which has been derived in
Sec. 2.3.

Let us now calculate some parameters of the gas molecules by the combined use of
Eqs.‘ 2.31,2.33,2.35 and 2.37.

2.8.1 Calculation of Average Kinetic Energy

Average kinetic energy per molecule can be calculated from Eq. 2.33, knowing that

3
K|=7k




£

Average kinetic energy per molecule = S mu = kT .. (2.38)

2
Similarly, average kinetic energy per mole = (Na) (

= %RT('.' R = Nik) .. (2.39)

The energy calculated using this expression is also called the translational energy; this
energy is dueto the motion of the molecules in space.

Let us illustrate the use of Egs. 2.38 and 2.39 in calculating the average translational kinetic
energy values of nitrogen molecules at 300 K.

' 3
Using Eq. 2.38, the translational energy of r:trogen per moleccle at 300 K = L} kT

= % X 138 X 1077 J K™ X 300K
=621 X 10™'J. _
Similarly using Eq. 2.39, the translational energy of nitrogen per mole at 300 K = —3— R1T

= —3 X 8314 Jmol ' K" X 300K
=3.74 X 10* I mol ™"

2.8.2 Calculation of Number Density and Concentration

Number density (#,) is defined as the number of molecules of a gas in unit volume. It can
be calculated by rearranging Eq. 2.35.
. N _p
N ) = — = - — - (2.4
umber density of a gas (n,) v =T (2.40)
Similarly, concentration (c), defined as the number of moles of a gas in unit volume, can be
calculated by rearranging Eq. 2.37.

n p

— = ‘ - (24
V RT 241)
Let us apply Eqs. 2.40 and 2.41 in calculating the number density and concentration of
nitrogen molecules at 298.2 K and 1.013 X [0’ Pa.

Concentration of a gas (¢) =

: , _ P _ 1013 X 10’ Pa
Number density (n,) of nitrogen molecules at 298.2 K= T 138X 105K %2 982 K

=2462 X 10¥ m™

. : p. 1.013 X 10° Pa
f nit 2K="= = T
Concentration (c) of nitrogen at 298.2 K RT 8314 Tmol K- X 2982 K
= 40.86 mol m™*

~

Note that the number density or the concentration of a gas is directly proportional to the gas
pressure and inversely proportional to its temperature. .

2.8.3 Caiculation of Mean Square Speed and Root Mean Square Speed

In Subsec. 2.6.2, we have defined mean square speed (u f) The square root of its value is
called root mean square speed and is represented as ums. For one mole of the gas,
combining Eqgs. 2.31 and 2.37, we can write

Maa® (v n=1and
V=RT=
P 3 {Nm=Mm=Mola:mass}
. - 3RT
i.e., mean square speed (%) = T - (242)

Root mean square speed (V ' )= Urms = | /—%S—T- - (2.43)

m

Kinetic Theory of Gases

The kinetic energy of a gas i$ due to

* random motion of the gas molecules.
" This is also called thermal energy.

Temperature is a measure of kinetic
(or thermasl) energy.

Eq. 2.41 will be used in the unit on
chemical equilibrium for the
calculation of concentrations of
reactants and products.

R is the gas constant for one mole

- and X is the gas constant for one

molecule.
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17 [Txgm's®
lkg 1 kg
=\/lmzs2

Z=1ms"

Air has average molar mass of
0.029 kg mol” . At room temperature

(300 .y, Urms of air molecules is
510ms '

Sound waves are caused by the
oscillations of the air molecules.
Hence, speed of the sound waves
cannot be more than the #m, of
the air molecules. The speed of
sound in air is 340 ms™' (i.e.,
around two thirds of u,.. of air
molecules).
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Let us calculate um: of methane molecules at 515 K using Eq. 2.43.

s = 1| IRT zvﬁxs3m3mmﬂxﬂxswx'
m 0.016 kg mol
=896 X 10°ms™.

Using the above example, answer the following SAQ.

SAQ 6 ,

Calculate the root mean square speed of hydrogen molecules at 500 K. (Molar mass of
hydrogen, = .002 kg mol ™)

2.9 DISTRIBUTION OF MOLECULAR SPEEDS

A fundamental assumption of the kinetic theory of gases is that the molecules of the gas are
in random and continuous motion. The molecules, however, do not move with constant
velocity throughout. They travel with changing velocities due to the large nymber of
collisions. Since velocity is a vector quantity and the molecules are in random motion, the
average velocity is zero. But the speed of the molecules is not a vector quantity and hence
the average speed is a fihite quantity. Since there are a.large number of molecules in any
sample of a gas, there will be different numbers of molecules having different speeds.

A typical distribution of the speeds of the molecules in nitrogen gas at 273 K is shown in
Fig. 2.5. Here the relative probability of a particular speed occurring, is plotted against
speed. The curve is not symmetrical and shows that there are more molecules with higher
speeds than the ones with the lower speeds.

Very few molecules have extremely small or extremely high speeds. The distribution is

characterised by most probable, average and root mean square speeds. These are defined
below :

i) The most probable speed, unp, is that which the largest fraction of molecules possesses. It
corresponds to the maximum in the distribution curve for speeds (Fig. 2.5).
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Fig. 2.5 : Distribution of speeds of nitrogep molecules at 273 K.




ii) The average speed, &, (also called the mean speed) is defined by the equatioh :

N
It is the arithmetic average of the speeds of the molecules 1 to N.

u= —l— (ul tTuwtut+..... + IIN) (244)

ii) The root mean square speed, u:ms, is defined by the equation :

= ] ;
Uims = V' = \/ﬁ W +w+uw+. ... + 1R) . (2.45)

Maxwell and Boltzmann derived an expression for the distribution of molecular speéeds.
Using this expression, it is possibie to derive the following relationships between molar mass
and the three types of speeds :

[2RT
Upp = - .1(2.46)
M,
- 8RT ‘
= .. (2.47
U \/ —ya ( )

Uems = \J 3RT .. (248)
M,

Let us calculate the average speed of nitrogen molecules at 298.2 K using Eq. 2.47.

8RT

TTMm* , -

§X 8314J mol ' K X 298.2K
3.142 X 0.028 kg mol ™'

u=4748 ms".

Average speed (#) of nitrogen molecules at 2982 K =

A change in temperature affects the molecular speed distribution curve. The distribution curves
for nitrogen gas at temperatures of 273, 1273 and 2273 K are shown in Fig, 2.6.

From the above curves, it can be seen that at higher temperatures (i) the most probable speed
is higher (ii) the fraction of the molecules possessing the most probable speed decreases and
(iiii) the distribution of the molecular speeds changes such that the spread is broader, compared
to the distribution at lower temperatures. Using the principles discussed above, answer the
following SAQ. '

SAQ7
Calculate the ratio #mp @ & : U, for a gas of molar mass M. Does the value of this ratio depend
on temperature? :

2.10 PRINCIPLE OF EQUIPARTITION OF ENERGY

. . .3 .
In Subsec. 2.8.1, we showed that the translational kinetic energy per mole is > RT. Likewise

we can calculate the contribution to energy arising out of rotation and vibration of molecules.
Each mode of motion is called a degree of freedom. All gaseous molecules have three
translational degrees of freedom. This is so since the translational motion is described by three
independent coordinates. Apart from the translational degrees of freedom a linear molecule
has two rotational degrees of freedom since.rotation is possible only around the two axes
perpendicular to its molecular axis. A non-linear molecule can rotate around all the three
mutually perpendicular axes and hence has three rotational degrees of freedom.

A molecule having F atoms (i.e., atomicity is F) has totally 3F degrees of freedom because 3F
coordinates arc required to locate their nuclei in space. That is, the sum of translational,
rotational and vibrational degrees of freedom for a molecule is 3F. The vibrational degrees of
freedom for linear and non-linear molecules can be calculated using the following expression:

Vibrational degrees of freedom
of a molecule having F atoms

(sum of translational and rotational

=3F - degrees of freedom)

Relative probability of speed occurring

Kinetic Theory of Gases

Speed/m s™

Fig. 2.6 : Distribution of speeds of
nitrogen molecules at three
different temperatures.

The importance of the temperature-
molecular speed relationship on
reaction rate will be discussed in the
unit on chemical kinetics.
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Molar heat capacity is the quantity
of heat required to raise the
temperature of one mole of &
substance through one degree kelvin

Molar heat capacity = Molar
mass X specific heat

C;, Cv, and R have the same units,
viz., J mol ™' K™

Hence, a linear molecule has 3F — (3 + 2) = 3F — § vibrational degrees of freedom. But a
non-linear molecule has 3F — (3 + 3) = 3F — 6 vibrational degrees of freedom. For
example, carbon dioxide (F == 3, a linear molecule) has (3 X 3) — 5 = 4 vibrational degrees
of freedom and water (¥ = 3, a non-linear molecule) has (3 X 3) — 6 = 3 vibrational
degrees of freedom.

So far, we have calculated the degrees of freedom for each kind of motion. We can calculate
the energy of molecuies due to each kind of motion using the equipartition theorem of classical
physics. This theorem can be stated as follows :

“The average energy of each different mode of motion of one mole of molecules is % RT”
Thus each translational and rotational degree of freedom contributes energy equivalent te

]7 RT to the energy of one mole of molecules. But each vibrational degree of freedom must
contribute RT to the energy. This is because vibrational motion has both potential and kinetic

1 . .
energy associated with it and each contributes —Z—RT to energy. Using this principle, the total

energy (1) of the gaseous molesules can be calculated. From the U values at different
temperatures, molar heat capacity values at constant volume (C,) and at constant pressure
(C,) can be calculated using the following expressions (which we shall derive in Unit 6 of
Block 2 of this course) : :

- U
Cv= ( 37 v
EP: (_jv+R

The contribution RT to energy due to each vibrational degree of freedom is significant only

» at high temperatures. At room temperature we need consider only contribution due to

translational and rotational degrees of freedom. This is evident from the molar heat capacity
values and C,/C, ratios of some gases at 298 K given in Table 2.1. Classical physics cannot
explain as to why contribufion to heat capacity values due to vibrational degrees of freedom
is significant only at high temperatures. In Unit 1 of Atoms and Molecules course, we
explained this using the principles of quantum mechanics.

Table 2.1: C, andC, values at 298 K

*

b G G, C,

Type of the Example Degrees of —— ——= = ="
. 3 3 5
Monoatomic gas Helium 3 (translational} '2‘ RT -; R ; R 1.66
R -
Distomic gas ~ Carbon 3 (translational) — pr ‘
monoxide 2 5 5 7 .
1 »—RT —R —R 1.40
2 (rowational) 2 X ?RT 2 2 2
1 (vibrational not
active at 298 K) \
3 it
Non-linear Water 3 (wranslational) -2- RT »
tn'a;tomic . . 3RT 3R 4R 133
molecule 3(outionsl) 3% - AT
3 (vibrational not
active at 298 K) N
SAQ S8

The specific heat of a gas at constant volume at 298 K is 692 J kg™ K™' and its molar mass
is 0.018 kg mol'. What is the value for C,/Cy ratio for the gas?

(Hint : Ev = specific heat at constant volume X molar mass)




............................................................................................
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2.11 INTERMOLECULAR COLLISIONS ~ ‘

A cubic metre of nitrogengas at room temperature and pressure contains about

2.462 X 10*° molecules (Subsec. 2.8. 2) moving with an average speed of 474.8 ms™’

(Sec. 2.9). In a gas, the molecules are not only in continuous motion, but also are constantly
colliding with one another. Because of collisions, a molecule changes its direction often and
moves in a zigzag way. The path of such a molecule can be imagined (as in Fig. 2.7) to be
within a twisted cylinder. An estimate of the number of collisions taking place in one
second in unit volume (known as total collision frequency) can be made by introducing the
concept of molecular size. For the sake of simplicity, the gas molecules are considered to be
hard spheres with diameter o. Thus, two molecules will collide with each other (‘hit") if
they are within a distance o. If the distance is more than o, the two molecules do not collide
(‘miss’). Fig. 2.7 depicts the motion of a molecule and indicates the condition under which
it hits or misses another molecule.

Collision cross section with radius o

i
Gas molecule with radius o/ 2

Zigzag path of the molecule ) v Miss

Fig. 2.7 : The zigzag motion of a molecule,

Since the average speed of a molecule s , it covers a distance equal to « in one second.
Due to its zigzag motion, all mol&cules present in the twisted cylinder with basc equal to
mo’ collide with the moving molecule. If there are not too many bends, then the volume of
the cylinder is given by Eq. 2.49.

Volume covered by the molecule in one second = base of the cylinder X height
= 1o’ - (2.49)

The number of molecules present per unit volume (number density) is 7. The collision
frequency for a single molecule (z)1) is equal to the number of collisions a molecule
undergoes in one second. It is given by the product of the volume covered by the molecule
in one second and the number density.

7 = mour, : .. (2.50)

In the derivation of Eq. 2.50, we have assumed that only one molecule moves and the
others are static. In reality, all the molecules are moving. To account for this fact, the
relative average speed u \/2 should be used instcad of u in Eg. 2.50. Hence the collision
frequency for a single molecule,

m = /2 watun, .. (2.51)

Eq 2.51 gives the number of colhs:ons experienced by one moiecule in unit time. The
number of collisions experienced by all the molecules in unit time in unit volume (i.e., total

collision frequency, Z)1) is given &
. 4 Y, l) g y Total collision frequency is an
_ — i in deciding the
L . (252 important parameter in g
=y anfle 5 G uro (2.52) ~ reaction raie. We shall study this in
the unit on chemical kinetics.

The factor —;— has been introduced so that collision between any two molecules is not

29

counted twice.
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Let us illustrate the calculation of total collision frequenéy of nitrogen at 298.2 K and
1.013 X 10° Pa using Eq. 2.52. The collision diameter of nitrogen is 3.740 X 10™'°m. The
following steps are used in calculating the total collision frequency:

Step (i) : Calculation of number density (n,) of nitrogen :
This has been already worked out in Subsec. 2.8.2.

n, = 2462 X 10° m”

Step (ii) : Calculation of average speed of nitrogen:
This has been worked out in Sec. 2.9.

u=4748ms"’

Step (iii) : Calculation of total collision frequency :
Using Eq. 2.52,

1 —~ -
Zh = ﬁ waun:

1 )
7 X 3.142 X (3.740 X 107" m)* X 4748 ms™' X (2.462 X 10%° m™)?

o Zi=8945 X 10 m3s!

2.12 MEAN FREE PATH

An important quantity in the kinetic theory of gases,is the mean free path, A. This is the
mean distance travelled by a gas molecule between two consecutive collisions. An equation
useful in calculating the mean free path can be derived as follows :

Distance travelled by a molecule in one second = u
Number of collisions per molecule in one second = z;;

Mean free path (A) = Distance travelled between two consecutive collisions -

u «
= C . (253)
= m— (using Eq. 251)
m o
ie, A2 1L 8 . (254)

V2 7d’ n,
It can be seen that A is inversely proportional to n, and hence it should be inversely
proportional to pressure { Subsec. 2.8.2). The lower value of A at higher pressure is
understandable since at higher pressure, a molecule will undergo larger number of
collisions. It may also be noted that the mean free path is inversely proportional to ¢°. This
means that a larger molecule will have greater chance of collisions. As a matter of fact,
quantity wa” is called the collision cross section of the molecule in the hard sphere model
proposed for gas molecules. :

Usiné the above principles, work out the foltoWixié SAQ.

SAQGS
Calculate the mean free path of nitrogen molecule at 298.2 K and 1.013 X 10° Pa. Its
collision diameter is 3.740 X 10 "’m.

2.13 SUMMARY

In this unit, we have discussed some characteristic features of gases. Laws governing the
behaviour of gases at low pressures and high temperatures are stated and explained. It has



been shown how a simple kinetic molecular model of the gas can be used to derive an

. . Kinetic Theory of Gases
equation to calculate the pressure exerted by a gas. This equation can be used further to
derive the ideal gas equation. This model is useful in showing how the constant collisions
between molecules are responsible for a distribution of the speed of molecules. Further, this
model helps us in deriving expressions for various kinds of speeds. We have also evolved a
method of calculating the total collision frequency and the mean free path assuming hard
sphere model for the molecules.
2.14 TERMINAL QUESTIONS
1) Calculate the molar mass of a gas for which density is 1.250 X 10° kg m™ at 273.2 K
and 1.013 X 10’ Pa.
2) 1.000 X 10~ m’ of argon at a certain pressure and temperature took 151 s to effuse
through a porous barrier. How long it will take for the same volume of oxygen.to
effuse under identical conditions?
[Hint : The time taken by a gas to effuse varies inversely as its rate of effusion.]
3) A mixture of 2.00 X 10 kg of H; and 2.00 X 10 kg of He exerts a pressure of
1.50 X 10 Pa. What are the partial pressures of H, and He?
4) Calculate the ratio of mean square speeds of oxygen to nitrogen at 300 K.
5) Calculate the number density and concentration of oxygen at 1.013 X 10° Pa and
300 K.
6) What is the 5,,/5,. value of a non-rigid diatomic gas?
[Hint : A non-rigid molecule has vibrational degree of freedom too.]
2.15 ANSWERS
Self Assessment Questions
1) pV=nRT=-2-RT 1Pakg
Mr, U -
. M, _lkgm s ke
Density = w/V = ‘&R_T— T lkgm's®
=1lkgm”

1.013 X 10° Pa X 0.032 kg mol”’
8314 Jmol ' K' X 2732K
=1427kgm™,

2) 6.022 X 10% molecules.

3) Total number of moles ()
= nn; + no, + neus = 5.00 mol.
nRT
v
500 mol X 8314 JK "' mot™' X 2502 K
a 0.0600 m’ ‘

Total pressure (p) =

=1.73 X 10° Pa

_ e 200 5P,
PNy e 2= 500 X 173 X 10° Pa

= 6.92 X 10° Pa
Similarly po, = 3.46 X 10° Pa.
and pcy, = 6.92 X 10° Pa

4) Nitrogen

5) 4 31




States of Matter 6) Root mean square speed of hydrogen at 500 K

3RT :\/ 3X 8314 Jmol KX 500K

Mn 0. 002 kg mol”'
250 X 10 s™.

7) Ump '.l; Uems
/ ZRT / 8RT \/ (3RT

= 1.000 : 1.128 : 1.225 (Dividing by

T
)
The above ratio does not vary with temperature since temperature term docs not appear
in it. N
8 C. =692 kg K" X0018 kg mol™
=1251] mol ' K™

S__nceC C.+R
C,=208Jmol' K™

= 1.66
1

\/i 7T02nn
Using n, calculated in Subsec. 2.8.2,
1
T 1.414 X 3.142 X (3.740 X 10 °m)? X-2.462 X 10* m”®
=6.536 X 10°m

Qll O s

9)

>
1l

Terminal Questions
1) Molar mass of the gas = 28.02 kg mol .

2) The gas with the smaller molar mass effuses at the faster rate, which means that it takes
less time for a given quantity of gas to effuse. That is, time (¢) taken by a gas for effusion
varies inversely as its rate of effusion (7).

1

Sotoe—
r
. 1
But according to Graham’s law, r «c —F———
/ Molar mass
oc / Molar mass
Loxygen __  /Molar mass of oxygen
Lacgon Molar mass of argon
=2
40

toxygcn tArggn da— 15]. X \/— §= 135 S

3) pu, = 1.00 X 10° Pa; py. = 5.00 X 10° Pa

2
U Oxygen 7

4 = =

u Nitrogen
5) Number density = 2.447 X 10> m™
Concentration = 40.61 mol m™.

6) U= (3X RT/2)+ 2 X RT/2) + (1 X RT)

=7/2RT ]
Cv=17/2RandC, = %
Hence, (,T,,/ C": =, %
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3.1 INTRODUCTION

The gas laws developed in Unit 2 are based on certain assumptions regarding molecules and
their interaction with each other. Some of these assumptipns are not valid under all
conditions; the gases obey ideal gas laws only a low pressures and high temperatures. To
start with, the deviation of the real gases from ideal gas behaviour will be discussed in this
unit. The features of the isotherms at different temperatures will be explained. Afterwards,
van der Waals equation will be deduced. This will be followed by a discussion on critical
phenomena and critical constants. The relationships between critical constants and van der
Waals constants will be derived. The principle of corresponding states will be explained.
After this, the methods of liquefaction of gases will be outlined. Finally the nature of
intermolecular forces and their effect on gases will be discussed. The study of intermolecular
forces will help you understand the properties of liguids and solids which we will take up in
units 4 and 5, respectively.

Objectives

After studying this unit, you should be able to :

state the difference in behaviour between real and ideal gases,

deduce van der Waals equation,

define the terms critical temperature, critical pressure and critical volume,

derive the relationships between the critical constants and van der Waals constants,
state and discuss the principle of corresponding states,

state the principles of liquefaction methods,

¢xplain the nature of intermolecular forces, and

discuss the effect of intermolecular forces on the condensation of gases into liquids and
solids.

3.2 DEVIATION FROM IDEAL GAS BEHAVIOUR

An ideal gas is a hypothetical concept. The real gases obey ideal gas laws only at low
pressures and high temperatures.-Before going into the reasons for the deviation from ideal
gas behaviour, let us study the behaviour of gases at different pressures and temperatures.
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For real gases, the value of zis
greater than or less than unity.

| o N { 1 i
0 200 400 600 800
platm

Fig. 3.1 : Plots of z against p for
several gases.

203K

293K

673K

" s s i e e v

Ideal gas

1 | N SR |
0 200. 400 600 800

p/atm

Fig. 3.2 : Plots of z against p for
nitrogen gas at three temperatures.

The van der Waals constant %’ is
equal to the excluded volume of one
mole of a gas. It can be shown that

‘b’ is equal to four times the actual
volume of the molecules. The

constant P’ has the units, m* mol ™!

Fig. 3.3 : The attraction experienced
by the molecules ol a gas.

Liquefaction of gases (sec. 3.7)

" clearly indicates the presence of

forces of attraction among gaseous
molecules.

The constani ‘2’ has the units,
Fa m® mol™

Behaviour of Real Gases
Experimentally, the behaviour of a gas-can be studued by measuring its pressure, volume,
temperature and the number of moles. If it behaves ideaily, its compressibility fagtor z,
which is defined by Eq..3.1 must be equal to 1.

=L o (3.1

If z deviates from the value of unity, the gas is said to deviate from ideal behaviour. In

Fig. 3.1, z is plotted against pressure for several gases. We notice that all gases approach ideal
behavmur at low pressures. This is inferred from the fact that z approaches unity at low
pressure for ail gases.

Jo lllustrate the effect of temperature, z is plotted against pressure for nitrogen gas at three
temperatures in Fig. 3.2. Note that the curve at high temperature (673 K) approaches ideal
gas behaviour much more'than the curves at lower temperatures (203 K and 293 K). This is
true of all the gases. To sum, up, the gases behave ideally at low pressures and at high
temperatures.

van der Waals derived an equation of state for explaining the expenmental facts of the
behaviour of gases. We shall study this in the next'section.

3.3 VAN DER WAALS EQUATION

The origin of the deviations from ideal gas behaviour lies in two faulty assumptions of the
kinetic theory of gases (discussed in Unit 2). Firstly, the volume of a molecule is.by no
means negligible and. cannot be ignored under all conditions. Secondly, there certainly .
exists intermolecular interaction between molecules at close distances. van der Waals
modified the ideal gas equation by taking into account the above shortcomings.

Volume Correction : van der Waals realised that the molecules of a real gas have definite
volume. Therefore, the entire volume () of the container is not available for the free
movement of the gas molecules."The volume available for the motion af the-molecules can
be given by (¥ — nb), where n is the number of moles of the gas and *b’ the correction in
volume for one mole of the gas. The quantity ‘" is known as co-volume.

Hence, corrected volume = V... = V — nb - (32)

Pressure Correction : van der Waals applied pressure correction by taking into account the
intermolecular forces. The pressure of a gas is due to the collision of the gas molecules on
the walls of its container. Consider two identical molecules in a gas such that one is
somewhere in the middle of the container and the othei just strikes the wall (Fig. 3.3).

It can be seen that a molecule.in the middle of the container is attracted on all sides by the
other molecules surrounding it. However, in case of a molecule which just strikes the wall,
there is a net backward drag on the molecule and it will strike the wall with a somewhat
weakened impact. Hence, the observed pressure {p) of a gas will be less thanthe pressure
“exerted by an ideal gas. A pressure correction is, therefore, to be applied. The correction
term in pressure { Ap) is proportional to two factors, viz.,

® the number of molecules striking the wall per unit arca and

®  ihe number of molecules attracting a molecule from behind.

Each of the above factors is proporntional to the concentration of the gas.
i.e.. Ap o (concentration)’

Number of molcs (n)
Volume of the container (V)

But the concentration of the gas =

Hence, it can be written that,

et
) o 2
)
. na
te. Ap = —;2- A (33

where ‘a’ is a parameter characteristic of a gas. Hence the corrected pressure (Peor) is given
by,

n a . )
corr — + : ..(3.4
Pon=p+ -39




If the corrected préessure and the corrected vgldme of the gas are substituted in the ideal gas

equation (Eq. 2.9), we obtain
2

(b + "3) (V = nb) = nRT L6

This equation is known as van der Waalﬂ equation. Since for one mole of a gas, V = ¥,
(i.e., molar volume) and n = 1, hence. Eq. 3.5 becomes

¢+ V—z) (Vo — by == RT ‘ ) ‘ L (36)

m

van der Waals equation (Eq. 3.5 or 3.6) is quite important and is applicable over a much
wider range of p— ¥ — T data than the ideal gas equation. The quantities ‘@’ and *#° are
called the van"der Waals constants or parameters. The values'of ‘@’ and ‘b’ are obtained
empirically by fitting in experimental p.— V'— F data to Eq. 3.5. It may be pointed that ‘b’ is
a measure of the molecular size and ‘@’ is related to the intermolecular interaction. Table 3.1
gives the values of the parameters ‘a’ and ‘b’ of some selected gases. It can be seen that ‘&’
increases as the size of the molecule increases whereas ‘@’ has large value for an easily
compressible gas. The values of the critical constants p., V. and 7. are also given in Table
3.1 and their significance will be dealt with in Sec. 3.5.

"Table 3.1 : van der Waals Parameters and Critical Constants of Some Gases

Gas @/Pam’mol | 10° X B”/m’mol'{ 10° X p /Pa{10° X Vc/m'mol”| T./K
He . 0003457 | 2370 220 . 57.8 521
Ar ' 01373 32.19 48.64 733 1507
H. 0.02476 26.61 12.97 65.0 | 32

2 0.1378 31.83 5076 78.0 154.8

N: 0.1408 39.13 | 3394 ',90.1 1263 .
co: 0.3639 4267 73.66 940 .| 3042
H-0 0.5536 30.49- 220.89 55.3 647.4
NH, 0.4225 37.07 125 - 725 405.5
CH, 0.2283 4278 4641 99.0 191.1

Explanation of the Behaviour of Gases using van der Waals Equation :
. Many a times, either oné or both the correction terms could become negligible. Let us study
these cases.

When ‘b’ is negligible
If b’ is very sniall, then Eq. 3.6 becomes, o .

@+ %) V.= RT , (37

i.e.pVm = RT — -s—

m

Ve @
orz=—5—-=1-—

(3.8
xT ' T Rmw 8

This shows that under these conditions, pV,,, will be less than RT or z will be less than

unity. Eq. 3.8 will Be valid for substances like water vapo.'r for which ‘@’ is large and ‘5’ is

comparatively small (See Table 3.1). Also for gases such as Nz, CHs and CO; (Fig. 3.1) at

moderately low pressures, Vi is large such that (Vi — b) is .iearly equal to V. Hence, Eq.
. 3.8 i applicable for such gases at moderatety low pressures.

When ‘a” is negligible >
If ‘@’ is negligible, we have

pVu—by=RT - = . o ST e L (39)
ie,pVo =RT +pb AR co . S g
me pb : . a - '». o .
= o = — . (3.1
orz = "pw 1+ RT 3.10)

Hence, pV. will be greater that RT or z will be greater than unity. Particularly this is ‘true
for hydrogen (Fig. 3.1) and noble gases for which the value of @ is small. This is aiso true

Real Gases and their Liquefaction

To help you use Table 3.1, the
actua} values of the parameters for
methane are given below

_ a = 02283 Pam® mol”*

b =4278 X 107" m® mol”
pe = 46.41 X 10° Pa:
V.=99.0 X 10° m’ mol™
T. = 191.1 K.
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States of Matter for all the gases at high pressures; since then ;i is negligible in comparison to p.
m

When g and b are both negligible
When pressure is very low or the temperature is very high, p is small but V,, is very large.

; a
# : In this case, the correction terms, — and b are both negligible in companson to p and V.

m

Hence, at very low pressures or high temperatures, the gases obey ideal gas equation and |
their z value is nearly equal to unity. .

Let us now illustrate the use of Eq. 3.5 in the calcnlation of pressure of 2.000 mol of
methane at 1.000 X 10° K occupying a volume of 5.000 X 107> m’®

Rearranging Eq. 3.5 we can write, -
. nRT n'a
P==np 7
From Table 3.1, a = 0.2283 Pa m® mol ™~
b=4278 X 10" m’ mol™" -
substituting the values of the parameters we get,
2,000 mol X 8.314 J mol K-' X 1.000 X 10’ K (2.000 mol)’ X (0.2283 Pa m* mol” )

3

P 500X 107 m — 2000 mel X 278X 10° m mol ) - (5000 X 10° my
p= 3328 X 10’ Pa

Applying van der Wadls equation to methane at 1 .000 X 10’ K, the pressure calculated is
3.328 X 10° Pa. -

Let us also calculate the pressure of methane using the same values of n, T and ¥ but
assurming ideal behaviour.
_ nRT 2000mol><8314Jm01 'k x 1.000 X 10° K
- E 5.000 X 107
= 3.326 X 10° Pa

It is interesting to see that the pressure values of methane obtained by van der Waals
equation and ideal gas equation at 1.000 X 10’ K are more or less same. This mdlcates that
the methane behaves ideally at 1 000 X 10° K. .

Virial Equation of State

A number of attempts have been made to propose equation of state for real gases. These are
supposed to represent the p — ¥ — T data over as wide range as possible. However, from
'practical consideration, it is desirable that the equation of state shouid have only a few
ladjustable parameters. It should be simple from mathematical point of view.

‘The most general equation of state was proposed by Kammerlingh-Onnes and is known as
ivirial equation of state. In this equation, the pressure is represented as power series of

'— as under

| m

! RT B G
p-RL L BD OO,

m m

. The coeflicients B(T), C(T) ... are known as virial coefficients. It may be noted that these
depend on temperature. By having sufficient number of terms in this equation, p— V—~T
data can be repr.sented to desiréd accuracy.

In the next section, we introduce the critical phenomena and then study the relationship
between van der Waals constants and critical constants. Before that, work out the following
SAQ.

SAQ 1

Calculate the pressure of 2.000 mol of methane at 298.2 K usmg the other data from the
above illusiration and assuming that it obeys van der Waals equation. Also calculate ns
value, if methane were to behave 1deally at 298.2 K.
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3.4 CRITICAL PHENOMENA

Andrews performed a scrics of experiments and obtained isotherms (p against V plots at
constant temperature) for carbon dioxide. The results obtained by him are shown in

Fig. 3.4.
D E
S
i
|
1
1
.§ ; The point O where two falling
= T curves, EFO and OGH, meet is
mathematically known as inflection
/ point. Around this point, the curve
remains horizontal. That is, around
/7 this point, volume change does not
= nroduce pressure change.
’

Vim
Fig. 3.4 - Isotherms of carhon dioxide.

At high temperature, the isotherm is a hyperbola (curve I) in accordance with Boyle’s law
(Unit 2). At low temperatures, the isotherms (the curves 11, 1] and V) show considerable
deviation from ideal gas behaviour. The isotherm at 304.2 K (curve 11) remains horizontal
for a certain value of pressure. The two fallimg portions, EFO and OGH, of curve II meet at
O. The point O is known as the critical point; the temperature and pressure at this point are
known as critical temperature, T, and critical pressure, p..

Along OFE (i.e., at pressures above that of point Q), the curve represents the liquid state
while along OGH (at pressures lower than that at O) the curve represents the vapour state.
Note that the molecules in the gaseous state below the critical temperature are said to be in
the vapour state. Below the critical temperature (in this case 304.2 X), the isotherms (such
as curves L1 and IV) take a general form consisting of (i) a low pressure region (AB) where
there is only vapour, (ii) a flat constant pressure portion (BC) representing the liquid-vapour
cquilibrium and (iii) a high pressure portion (CD) which is the isotherm of liquid carbon
dioxide. At point B, the first drop of liquid appears and along BC, both the vapour and
liquid forms of carbon dioxide are present. The pressure along BC is constant and is called
the vapour pressure of carbon dioxide at the temperature of the isotherm. At C, the last
drop of liquid is formed from the vapour. It can be seen that on changing from B to C, the
volume has decreased due to conversion of vapour into liquid (without change in pressnre).
It may be noted that the curve CD is much steeper than AB. This is bécause of ihe fact that
liquids are much less compressible than gases and so a small change in volume requires a
large change in pressure. An interesting observation is that if the extremities of the
horizontal portions like BC of different isotherms (like curves III and IV) are joined, a bell
shaped curve is obtained with crest at O. This is the area of discontinuity in which liguid
and vapour coexist. Outside this area, there is either only gas (or vapour) or only liquid
carbon dioxide.

Now the guestion arises whether it is necessary to cross thus area of discontinuity when the
gas is converted into liquid or vice versa. The answer is no. For example, assume that there
is a certain amount of vapour with pressure and volume corresponding to the-point Q. It is
desired to convert this into liquid directly without the simultaneous presence of both liquid
and vapour. For this, we have to avoid passing through the bell-shaped area, BOC. First of
all we can heat the vapour at constant volume until it reaches a point R which lies above
the critical pressure and temperature. The gas is then cooled at constant pressure which
results in decrease of volume up to the point S. Now the volume is kept constant and the gas
again cooled -until the point T is reached, which results in the decrease of pressure. We see
that as a result of these changes, the gas changes over to the liquid state without any
discontinuity.

Thus, it can be seen that along the path QRST, the substance remains wholly in the gaseous

state or in the liquid state. This is called the continuity of state. That is, the gas and the

liquid are the combination of the same state and it is not necessary to pass through both the

states simultancously in their interconvérsion. The gaseous and liguid states are collectively

known as fluids. ‘ 37
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3.5 CRITICAL POINT AND CRITICAL CONSTANTS

Without going into the process of continuity of state, one gets the feeling that if we apply
enough of pressure on a gas we should be able to liquefy it. However, it is an experimental
observatioun that a gas does not liquefy above a certain temperature, however, high may be
the pressure. The characteristic temperature above which a vapour does not liquefy is called
the critical temperature (7). The vapour pressure of a liquid at its critical temperature is
called its critical pressure (p ). It is the minimum pressure required to produce liquefaction
of a vapour at its critical temperature. The volume occupied by one. mole of a fluid at its
critical temperature and pressure is called critical volume (V). Let us now see how T, p.
and V. are related to van der Waals constants.

3.5.1 Critical Constants and van der Waals Constants

The van der Waals equation (Eq. 3.6) can be made the basis of a theoretical consideration.
The curves in Fig. 3.5, known as van der Waals isotherms, show the isotherms calculated
on the basis of this equation,

Expanding Eq. 3.6 we get,
a
w+ *V'g) (Vo —b)=

‘ b
i.e.,me—pb+T‘;- —%———RT CRE

Va .
Muitiplying the equation throughout by - we obtain,

v pyp s W _ab _ RTW;
o p

(312

{.e.V’-VZ(b+——)+—V —%b—o - (313)

This cubic equation will yield three values for V,, corresponding to a given pressure and
temperature. All the three values of F, may be real or one may be real and the other two
may be complex conjugates. Isotherms IIl and IV do yield three values of V., in certain
ranges of p.and V. This is true in general for all isotherms below the critical temperature.
Curve II corresponds to critical temperature and curves at higher temperature (such as curve
I) approach the isotherm representing the Boyle’s law. These theoretical curves are similat
to those obtained by Andrews for CO; but a major difference is the wave like portion
BCDEF in the theoretical curves. If experiments are performed without perturbance, then
portions BC and EF are realisable; these portions represent the supersaturated vapour and
superheated liquid, respectively.

platm

V/m?
Fig. 3.5 : van dey Waals isotherms.




The wave like portion t%creases as temperature increases. At the critical temperature, it is
reduced tG a point Winich means that all the three roots of Eq. 3.13 are identical and equal
to the critical vQlume, V..

ie, Vo= V.iorVa—V.=0

We tan obtain a cubic equation by raising it to power three, i.c.,

Va—V)y =0 - (3.14)
or'¥p = 3VVa+ 3VilVu— Vi=0 - (3.15)

This equation should be identical with the expanded form of van der Waals equation
(Eq. 3.13) at critical temperature and pressure

RT. a
. 72 c £ ab
Vo—Vab+ PR Vo =5 =0 .. (3.16)
Now comparing the coefficients of equal powers of ¥y, in Egs 3.15 and 3.16, we obtain
RT.
_3Vc:_(b+ )or3V—b+ 7 v (3.17)
=2 - (3.18)
b
P, P,
From Egs. 3.18 and 3.19, we obtain
Ve
3= bor V.= 13b - (3.20)
Substituting the value of V. in Eq. 3.18,
a
.= «~ (321

P= (3.21)
From Eqs 3.17 and 3.20, we get
RT,

=@V.—b)=8b
or T. = 8h. i

R
a 1
= 8b. —- . — (using Eq. 3.21
275 * R (sing Eq. 3.21)
8a
= 57Rb - (3.22)

Hence, the values orp_, V. and T can be calculated from van der Waals constants

3.5.2 Determination of Critical Constants

Let us study the experimental method of determination of critical constants.

Critical Temperature ’ ,

A capillary tube capable of standing high pressure is evacuated and filled with the liquid
and sealed. This is placed in an aluminium block having a window. The system is then
heated and the meniscus of the liquid is kept under observation through the window.
Initially, the liquid is in equilibrium with the vapours and a distinct boundary can be seen.
As soon as the critical temperature is reached, the boundary disappears. The experiment is
repeated a number of times by varying the temperature in both directions. The mean is then
taken as the experimental value of critical temperature.

Critical Pressure

The gas under observation is taken in a hlgh pressure vessel at the critical temperature.
Initially the gas pressure is kept low. Slowly the gas is compressed at constant temperature.
As soon as the vessel inside is covered with mist, it indicates the formation of some liquid
and this pressure corresponds to p.. Since the pressure is generally much higher than what
an ordinary manometer can measure, special pressure gauges are to be used.

Real Gases and their Liquefaction
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Critical Volume

Critical volume is determined indirectly based on the findings of‘Cailletet and Mathies.
According to them, a plot of the mean values of the densities of a liquid and its saturated
vapour against temperature is a straight line (Fig. 3.6).

Pl

Temperature/K

Density/ kg m™

Fig. 3.6 : Piot of densities of vapour (1), liquid (II)
and their mean values (I11) against temperature.

It is clear that the density of the vapour (curve I) increases with the increase in temperature
because the evaporation is higher at higher temperature. But the density of the liquid
decreases as temperature increases (curve II). At the critical temperature, the two densities
must be equal. However, due to fluctuations it is very difficult to measure the density at T..
Hence, the two curves, I and Il are extrapolated to give a continuous curve. The mean
density is now plotted to get curve III and extrapolated to intersect the combined curves I
and II at C. The density at C, known as critical density, represents the density at .. From
this, the critical volume is calculated using the relationship,

_ Molar mass

"~ Critical density

<

Some of the experimental values of the critical constants are already given in Table 3.1.

3.5.3 Test for van der Waals Equation

The calculation of the compressibility factor at the critical point (z.) based on experimental

2., V. and T values can be a test for van der Waals equation. Theoretically the value of z.

can be derived as follows :
V.

%= RT.

.. (3.23)

a 1 1
2757 3D R 32727Rb

=
-3
=5 = 0375

For most gascs, the value of z. obtained from the experimental values of the critical
constants lies between 0.2-0.4, This variation from the theoretical value of 0.375 indicates
the approximate nature of van der Waals.equation. Why don’t you apply these principles in
solving the following SAQs? -

SAQ2
Inaane gas supplied for household use is mostly a mixture of propane and butane. Ace the
critical temperatures of these two gases higher than 298 K?




SAQ 3
Using p., V. and T. values of methane'from Table 3.1, calculate the value of z.. Does
methane obey van der Waals equation ar the critical point?

3.6 EQUATION OF CORRESPONDING STATES

The pressure, volume and temperature of a gas when expressed in terms of the critical
constants are called reduced quantities. Mathematically, the reduced parameters are defined
as follows :

Thus, reduced pressure = 7 = ;;or p = mp, «(3.29)
Va
Reduced volume = ¢ = 5 or Vo = ¢V. .. (3.25
T
Reduced temperature = § = T, or T = 6T. .- (3.26)

These quantities were introduced by van der Waals in the hope that one single equation
could be obtained which is valid for all substances. Using Egs. 3.6, 3.24, 3.25 and 3.26 we
obtain,

(mp, + (7;’?) (6V. — b) = ROT. - (3.27)

Now substituting the values of p, V., and T. from Eqs. 3.20-3.22,

. © a 4 8a
275 grop B¢P ~ O = ROy . (3.28)
a 3 _ 86a - ‘
(Tt PG DE=o . (3:29)
. a
Dividing both sides by 275
or ( + %) (3¢ — 1) = 89 .. (330)

This is known as the equation of the corresponding states. It should be valid for all gases. In
general, if any two gases have the same values for any two of the reduced quantities (, ¢
and 6), then the values of the third will also be equal and the two substances are said to be
in the corresponding states. This is also called the principle of corresponding states. It tells
. us that if the isotherms are plotted in terms of reduced quantities (7 and ¢ at constant 6),
the same curves should be obtained for all gases.

Using Eq. 3.3Q, work out the following SAQ.

SAQ 4,
Using the values of 2_and V. for methane from Table 3.1, calculate gs reduced
temperature if it occupies 5.000 X 1672 m® space at 3.328 X 10° pa.

Real Gases and their Liquefaction
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The superconducting materials
conduct electricity without offering
resistance. There is no energy loss as
heat during such electric conduction.
The superconducting materials are
extremely useful in power
transmission, computers, the
development of nuclear fusion
pawer and supcrfast trains, disease
diagnosis and so on.

The inversion temperature (17) of a
gas is related to its van der Walis
constants as per the equation.

2a

Rb
For hydrogen gas, the inversion
temperature calculated as per this
equation is 223.8 K.

i

3.7 LIQUEFACTION OF GASES

The critical phenomena and the knowledge of the critical constants have a practical use in
the liquefaction of gases. The liquefaction of air is important in the manufacture of nitrogen
and oxygen which are both important industrial chemicals. The liquefied petroleum gas
(mixture of propane and butane) is used as a domestic fuel. Liquid helium and nitrogen are
particularly important for making the materials superconducting. Easily iiquefiable gases
such as ammonia and dichlorodifluoromethane (freon) are used in refrigeration and air
conditioning. '

Let us now study some methods of liquefaction of gases. It has already been clarified that a
gas cannot be liquefied above its critical temperature. Many substances like water, ethyl
alcohol etc., have high critical temperatures and hence exist as liquids even at room
temperature. Others like ammonia, sulphur dioxide etc:, under ordinary conditions are
above their critical temperature but can be easily liquefied by cooling using freezing
mixtures under moderate pressure. This implies that the freezing mixture lowers the
temperature of a substance below its critical temperature and the moderate pressure is then
sutficient to hquefy the gas. On the other hand, there are many gases like oxygen, nitrogen,
hydrogen and helium whose critical temperatures are much lower. Special methods are
adopted to cool these gases below their critical temperature. Let us study the principles of
two of the common methods of liquefaction.

3.7.1 Linde’s Method

This method is based on the principle known as Joule-Thomson effect. According to this
effect, when a gas under high pressure is allowed to expand into a region of low pressure, its
temperature falls. The gas does not do any external-work but the kinetic energy and hence, -
the temperature of the gas is lowered becaase of the work done in separating the molecules
against their attractive intermolecular forces. A precaution is required in this process. To
have a cooling effect, a gas is to be brought below a characteristic temperature, known as
inversion temperature, before allowing it to expand. If the temperature of the gas is above
its inversion temperature, Joule-Thomson expansion results in heating.

The schematic diagram of the equipment used is shown in Fig. 3.7.

L
I

Heat
exchanger

r—Cold gas

L

Fig. 3.7 : Liquefaction using Linde’s method

Tha gas at a temperature lower than its inversion temperature is compressed using a
compressor. This gas is then allowed to expand through a valve which results in its cooling.
The cold gas is used in cooling the high pressure gas in the heat exchanger and is
recirculated through the compressor. It ‘gets cooled still further, as it expands. The cycle
continues till the liquefied gas drops from the throttle.

3.7.2 Claude’s Method

Claude’s method (Fig. 3.8), is more cfficient than Linde’s method. The compressed gas in
the insulated vessel (i.e., under adiabatic conditions) is partly used to do work against a




Compressor

Heat
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QjGas

Cylinder

Expansion
-valve

Fig. 3.8 : Liquefaction using Claude’s method.

piston in a cylinder and partly expanded through a vaive. The cooled gas obtained by
adiabatic expansion is used for cooling the incoming gas in the heat exchanger. The process
is repeated till the gas is liquefied.

Using the principles of Linde’s method, answer the following SAQ.

SAQS
If hydrogen gas is allowed to undergo Joule-Thomson expansion at room temperature, it is
heated but not cooled. Explain.

3.8 INTERMOLECULAR FORCES

In Sec. 3.3, we have studied that the real gases deviate from the ideal gas behaviour
because of the presence of intermolecular forces. The intermolecular forces are also
responsible for the conversion of gases into liquids and solids. van der Waals not only
"derived an equation to explain the behaviour of real gases but also tried to develop a model
that would explain the behaviour of liquids. In recognition of his work, the weak
intermolecular forces in liquids and solids are often called van der Waals forces.

3.8.1 van der Waals Forces
van der Waals forces include :

i) Dipole-dipole interactions
1) Dipole-induced dipole interactions
iii) London or dispersion forces .

Let us study them in detail.

Dipole-Dipole Forces & ) ) o

Polar molecules can attract each other electrostatically, During this attraction the positive
‘end of one molecule is close to the negative end of the adjacent molecule, as shown in
Fig. 3.9. ,

Such an attraction is called dipole-dipole interaction. In the liquid state, although
molecules are in continuous motion, they tend to align themselves so that, on the average,
the intermolecular attractions are maximum.

The interaction energy (Vi) between two polar molecules separated by a distance 7 is
found to be

® directly proportional to the square of the product of the dipole moments of the two
molecules

Real Gases and their Liquefaction

If the container used in a process
does not allow heat transfer with the
surroundings, it is called adiabatic.
The energy required for adiabatic
expansion is supplied by the gas
molecules. The energy loss of the gas
molecules results in their cooling.

Attractive forces between uncharged
atoms or molecules are known as
van der Waals forces.

Fig. 3.9 : The efectrostatic interaction
of two polar molecaless —~ — shows

attraction.

The dipole-dipole interaction
between two HCI molecules is 130
times weaker ¢han the bond energy
of HCl molecule.
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London forces are the only attractive
forces between nonpolar molecuies.
Polar molecules have dipole-dipole,
dipole-induced dipole and also
London forces.
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® inversely proportional to temperature
® inversely proportional to 7°

. 1
(i.e., Vuu OCF)

Dipole-Induced Dipole Interaction

The dipole-dipole interaction can explain the attractive forces between polar molecules at
ordinary temperatures whereas at high temperatures it cannot. It was thought that induced
dipole interactions must.also be important. A polar molecule can induce a dipole moment
in a neighbouring polarisable atom or molecule. Let us explain, the terms ‘polarisable’ and
‘polarisability’. An atom or molecule is said to be polarisable, if its electron cloud can be
distorted. The ability of a species to undergo electronic distortion is described in terms of
polarisability. L'he electron charge cioud of a largér atom (one with higher atomic number)
can be easily distorted due to the following reasons :

® the electrons are more in number
o the influence of the nudeus is less due to larger distance

So a larger atom has a higher polarisability than a smaller atom. For example, argon has
higher polarisability than helium. Similarly larger molecules (due to greater number of
electrons) have higher polarisability than smaller molecules. For example, ethane is more
polarisable than methare; propane is more polarisable than ethane, and so on.

The dipole-induced dipole interaction between a polar molecule and a neighbouring
polarisable molecule (in which dipole is induced) causes a lowering of energy. That is, such
an attractive interaction adds to the stability. The interaction energy (V.4) between a dipole
and an induced dipole separated by a distance r has been estimated to be ‘

® directly proportional to the square of the dipole moment of the polar molecule
® directly proportional to the polarisability of the molecule (in which dipole is induced),
® inversely proportional to the sixth power of r

1
(i.e., Vud oC 7(:

Unlike dipole-dipole interaction, dipole-induced dipole interaction is independent of
temperature. '

Induced Dipole-induced Dipole or London e¢r Dispersion Interaction

The two interactions mentioned earlier cannct explain the liquefaction of gases like '
hydrogen, oxygen, chlorine, helium and argon—which are all nonpolar. London gave an
acceptable quantitative explanation for the attractive forces existing between nonpolar
molecu’es and hence such forces are called London forces. These forces are called
dispersion forces since the oscillations producing the attractive forces are also responsible
for the dispersion of light by the molecules.

To understand the origin of this interaction, let us consider a pair of helium atoms. On the
average the charge cloud around a helium atom is symmetrical. But the electrons
surrounding the nucleus of the helium atom are in constant motion. Because of this, the
helium atom can develop a momentary nonsymmetrical electron distribution. This results in
a temporary dipolar arrangement of charge, otherwise known as instantaneous polarity.
This helium atom which has instantaneous polarity can then induce a dipole in the
neighbouring helium atom, Fig. 3.10.

Atom A Atom B

Fig. 3.10 : Instantaneous dipole on atom A
induces a dipole oa atom B, §" and § refer to
dipolar charges and + stands for the nucles.




The resuitant induced dipole-induced dipole attraction is both weak and short-lived. But
this can be very significant for large atoms (or molecules) which have high polarisability.
For these interactions to become strong enough to produce a solid or a liquid, thermal
motions must be decreased. This explains why noble gas elements have low liquefaction

" temperatures. The interactions explained above are also responsible for the liquefaction of
nonpolar molecules like H», CH4, CCl, and CO,,.

The interaction energy (Vais) between two noble gas atoms or two nonpolar molecules
separated by a distance 7 is '

® directly proportiopal to the product of the polarisabilities of the two species
® inversely proportional to the sixth power of r,
) .

i.e., Vdis(x 3
: r

3.8.2 Total Interaction Energy

All the three types of interactions explained above are attractive in nature and can account
for the cohesive forces responsible for liquefaction of gases. It must be remembered that
repulsive forces also operate when molecules are brought too close. It has been estimated
that the interaction energy due to repulsion (Vi) is inversely proportional to twelfth power
of r. ' :

1 . ' -

e, Vi oc—7
r

The sum of attractive and repulsive energies, is the total interaction energy (V).

l/[ = V““ + Vpd + Vdis + ‘Vrep aes (3.31)
This equation can also be written as
p q
W=———= (332
TR T8 (3.32)

Where the first term in the right hand side stands for repulsive interaction Viep(+Ve sign);
and the second term for the sum of all attractive interactions, viz., Vs, Vg and Vi (—ve
sign). The terms p and g are characteristic of the molecules under study. Eq. 3.32 implies
that the molecules have attractive forces (proportional to r®) and repulsive forces
(proportioral to r'%).

The effect of attractive and repulsive interactions on the energy of a system can be
understood by a plot of V. against r (Fig. 3.11) drawn for methane molecules. By
convention, the total interaction energy of the two methane molecules separated by infinite
distance (represented by the point A) is zero. When the two molecules are brought closer,
they begin to attract one another and there is decrease in the total interaction energy. This is
indicated by the falling portion ABC of the curve. At C, the two molecules have the lowest
energy. If the two molecules are brought still closer, repulsive.forces overtake the attractive

. forces and the total interaction energy starts increasing. This is indicated by the rising
portion CD of the curve. Note that the decrease in V. due to attractive forces (along ABC)
is gradual but the increase in ¥, due to repulsive forces (along CD) is very steep (Guess the
reason!).

D -
+ Repulsive
region
—
\q-"
= A
0 hi e e - ——— ——— e —-——

Attractive
- region

= pm

Fig. 3.11 : Total interaction energy as a functior
. of intermolecular distance.

)

Real Gases and their Liquefaction

Cohesive force is responsible for the
condensation of a gas into a liquid or
solid. van der Waals forces
-pentioned in Sec. 3.8.1 are cobesive

" 1 nature,

Attractive forces cause decrease in
interaction energy. Repulsive forces
result in increase of interaction
enesgy.
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The strength of hydrogen bonding is
of the order of 10-40 kJ mol™

» ln Unit 6 of Atoms and Molecules
course, you have studied that the
unit of dipole moment is'C m.

3.8.3 Hydrogen Bonding

There are several specific types of interactions encountered between various types of
molecules. Of these, metallic bonding and hydrogen bonding are very significant. We shall
study metallic bonding in Unit 5. Here let us study hydrogen bonding in detail. When a
hydrogen atom is covalently bonded to a strongly electronegative atom, such as oxygen,

Lfluorine or nitrogen, the bond is much polar. Such a hydrogen atom would still possess

large affinity for nonbonding electrons présent on other oxygen, nitrogen or fluorine atom.
The latter atom could be a part of the same molecule or a neighbouring molecule. The
strong interaction that results is called a hydrogen bond. It is a special type of dipole-dipole
attraction. In water, for example, hydrogen bonding arises between hydrogen atom (positive
end of the dipole) of one water molecule and the oxygen atom (negative end of the dipole)
of the other.(Fig. 3. 12a) Hydrogen fluoride is another molecule having hydrogen bonding
(Fig. 3.12b). .

o6~ of 8- o 8- 6+ 8- o+

-“--—O—'—H--—--O——H--‘---O—H-—---O—H-—f--
H/ . H/ H/ -H
o+ &+ o+ o+
(a)
&~ . 5~
’l \6,‘, ’ ’/F\ 6+ ’
V4
o+ H . 5"'," H 6"'/"
N H N H SN H -
S, 8- : p \\5—/ \\\5...
| ® '

_Fig. 3.12 : diydrogen bonding : (a) in water (b) in hydrogen fluoride.

Hydrogen bonding is strong in HE, H,O and NH; as compared to many hydrides due to the
higher electronegativity of fluorine, oxygen and nitrogen. Strong hydrogen bonding in' these
compounds results in enhanced attractive mteractxons between the molecules.

Let us study the effect of the above interactions on the physical properties of the
compounds.

3.84 Effect of Molecular Interactions on Physical Properties

- Intermolecular forces have significant effect on ihe physical properties such as melting:

point, boiling point, solubility, surface tension, viscosity, density and so on. Some of these

- aspects will be studied in Unit 4. But here we consider the effect of intermolecular forces on

melting and boiling points only, since these two concern change of state.

i) Polar molecules have Higher melting and'boiling points than the nonpolar molecules of
similar molecular size. It s so since in the polar molecules, in addition to London
forces, dipolar interactions are also present. In general, larger the dipole moment, the
higher the melting and boiling points. See some illustrative data in Table 3.2.

Table 3.2 : Effect of Dipofe-Dipole Interaction on Melting and Boiling Points

Compound Relative molecular mass Dipole moment/ Melting point/K Boiling point/K
’ ) 10 Cm : .

C:He 0.1 0 89.7 184.4
CHSF M0 6.17 1312 1946

SiHe - 321 0 . 88 161.2

PH, 340 1.93 140 185.3

H.S 34.1 3.24 187.5 2123

iij Among the noble gases, the boiling point increases with atomic number (Table 3.3). As
explained earlier, the London forces are more in large atoms due to hlgher
polarisability.
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iti) Among a series of similar nonpolar molecules such as hydrocarbons; boiling point Real Gases and their Liquefaction
increases with the molecular size (Table 3.3). Again, the reason is that a larger
molecule has higher pglarisability and increased London forces.

iv) Among the hydrides of 15, 16 and 17 group elements'in the periodic table, those
having the highest boiling points are NH3, H.O and HF, respectlvely This is due to the
strong hydrogen bonding in these three compounds.

»

Table 3.3 : Effect of London Forces oa the Bolling Points

Noble gas Atomic number Boifing point/K
He 2 a1
Ne 10 270
Ar 18 87.3 -
* : Relative molecular mass is more
Kr ; 36 120.7 commonly known as molecular
Compound . Relative molecuiar mass Boiling point/K weight. ‘
CH, 16 ) 1115
CZHe . X 30 l 844
CiH; ’ 44 231
C.Huo (Butanc) ' . 58 2724

v) There is a striking contrastin the boiling points of the isomeric compounds, ethanol
(351 K) and dimethyl ether (249 K). The hydrogen bonding between the molecules of
ethanol (Fig. 3.13) contributes to a much higher boiling point. On the other hand, the
molecules of dimethyl ether are held together only by weaker dipole-dipole interaction

(Fig. 3.14)
6-0 i+ o4
- \'Hh CH; . /CH3
CH,CH: Sl b- CH,CH; 6—0
? . -
1 0]
ET 4+ &
b Ei.‘. b CHg/ ~ Ch;
.is- 50‘
(o) ‘ 5+ 0 84
: CH:CH,  Hes CH; CH,
Fig. 3.13 : Hydrogen bonding in ethanol, - Fig. 3.14: Dipole-dipole

interaction in dimethyl ether.

vi) London forces also depend on the molecular geometry. For example, among the
isomeric hydrocarbons, straight chain isomer has higher boiling point than the
branched chain isomer. Let us illustrate this with a specific example. The straight chain
isomer, butane, boils at 272.4 K whereas the branched chain isomer, 2-methylpropane,
boils at 263 K. The molecules of 2-methylpropane are nearly spherical whereas those
of butane are disiorted rod-like (Fig. 3.15a and b).

(a)
Fig. 3.15: (a) Interactions among nearly spherical molecules of 2-methylpropane
(b) Interactions among distorted rod-like molecules of butane. ‘
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States of Matter Hence, the molecules of butane have a larger surface area for interaction with each other than
those of 2-methylpropane. The stronger interactions in butane are reflected in its higher boiling

For a given volume, a sphere has the pOint.

smallest surface area as compared to . . . . , L
othe: geometrical shapes. Care must be exercised in comparing the physical properties of molecules differing sharply

in more than one way, viz., relative molecular mass, polarity and geometrical shape Based
on the principles developed above answer the followmg SAQ

SAQ6
The melting points of Ci,, Bey and [ are 172 K, 266 K and 386 K. Explain this vanation.

3.9 SUMMARY

In this unit, we have discussed the behaviour of real gases. Their deviation from ideal gas
behaviour has been explained in terms of intermolecular forces. van der Waals equation has
been derived and used in explaining the deviation from ideal gas behaviour. The necessary
conditions for liquefaction of gases have been discussed. The critical constants have been
defined. Their relationships with van der Waals parameters have been established. The
principle of corresponding states has been stated and explained. The methods for
liquefaction of gases are outlined. The nature of intermolecular forces, their types and their
effect on physical properties of substances are discussed.

3.10 TERMINAL QUESTIONS

1. Using the van der Waals parameters of mtrogcn given in Table 3.1, estimate its crltlcal
constants and compare with the actual values given in Table 3.1.

2. What is the pressure change if two moles of steam at 5.000 X 10 K occupying 0.0300
m’ of volume is heated upto 1.000 X 10’ K at constant volume. Assume that steam
behaves as a van der Waals gas.

" a = 0.5536 Pa'm® mol™? and
b= 3.049 X 10° m’ mol™

Which of the substances listed in Table 3.1 can be liquefied at 298 K?

State the principle of corresponding states in as many ways as you can.

Why is the liquefaction of gases easier at low temperatures and high pressures?

AT AN R

Ethanol has higher boiling point than butane althoﬁgh the latter has higher relative
molecular mass. Explain.

7. A vessel of 1.000 X 107 m’ volume contains 0.0180 kg of argon at 300.0 K. Calculate
it pressure using ideal gas and van der Waals equations. Us¢ Table 3.1.

8. Calculate the reduced pressure and reduced temperature for oxygen gas at 273.2 K and
1.013 X 10° Pa. Use Table 3.1. ,

3.11° ANSWERS

Seli Assessment Quesiions

-
1. Asavander Waals gas fg
_ nRT n’a I
P=v=m " ¥ |
= 9.898 X 10° Pa o R

As an ideal gas : i
p = 9,917 X 10* Pa, Thus, the values of pressure calculated from van der Waals
48 . equation and ideal gas equation are slightly different. '
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The indane gas is in the liquid state inside the cylinder; hence, the critical temperatures Real Gases and their Liquefaction
of propane and butane must be higher than 298 K. (Their critical temperatures are 370
and 425 K, respectively.

Using pc, V. and T. from Table 3.1,

o 2o =0.2892

Substituting the expressions for p., V. and T. from Eqgs. 3.20—3.22, in Eq. 3.23,
z. = 0.375
Hence, at the critical point, methane deviates from van der Waals equation.

r=2 =7171 x 107
Y4

[

Substituting these quantities in Eq. 3.30, @ is found to be equal to 1.371.

The inversion temperature of hydrogen is much lower than room temperature. Hence,
Joule-Thomson expansion at room temperature causes heating.

The main intermolecular interactions in CI,, Br; and I; are London forces. Since the:
polarisability and hence, London forces increases with relative molecular mass, the
melting points are in that order.

Terminal Questions

L.

Critical constant calculated as per Egs. 3.20-3.22:
V.= 1174 X 10 m’ mol™*

pe = 3.400 X 10° Pa

T.=1282K

Using van der Waals equation, the pressure values at 5.000 X 10’ K and 1.000 X 10’ K
are 2.752 X 10’ Pa and 5.530 X 10° Pa. The pressure change is
(5.530 — 2.752) X 10° Pa = 2.778 X 10° Pa.

CO», H,0 and NH; can be liquefied at 298 K since their critical temperatures are
higher than 298 K.

As given in Sec. 3.6.

At sufficiently low temperatures, thermal motions are reduced, and do not disturb
attractive forces between the molecules. Hence, the molecules are drawn together io
form a liquid at low temperatures. Liquefaction is easier at high pressures when
distznces between molecules are smaller on the average and hence, the attractive
interactions are higher.

Apart from London forces, ethanol molecules have strong hydrogen bonding too. But
in butane, only London forces are present. Because of stronger intermolecular forces,
ethanol has higher boiling point than butane.

According to van der Waals equation, pressure calculated is 2.440 X 10° Pa, whereas
as per ideal gas equation, it is 2.494 X 10° Pa.

6 = 1.765; = = 1.996 X 1072,
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UNIT 4. LIQUIDS

Structure

4.1 Introduction
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4.3  Structure of Liyuids
4.4  Surface Tension and Viscosity
4.5 Vaporization
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4.6 Trouton’s Rule
4.7  Liquid Crystals
48 Summary
4.  Terminal Questions
4.10 Answers

4.1 INTRODUCTION

In Unit 2, we discussed the characteristics of ideal gases. We assumed that there is no
attractive or repulsive interaction between the individual molecules. In Unit 3, this
treatment was modified to account for the behaviour of real gases at low-temperatures and
high pressures and to explain the liquefaction of gases. Finite size of the gaseous molecules
and their weak interaction were recognised. In Unit 5, we are going to study the strong
interactions in a solid crystal and the orderly arrangement of particles in it. In this unit, we
will discuss the characteristics of liquids in contrast to those of gases and solids. Our aim is
not to list the properties of liquids but to correlate these to the intermolecular interactions.

We will describe the features of a model proposed for the structure of liquids. We shall
explain the correlation between the intermolecular forces and the properties of liquids such
as surface tension, viscosity, vapour pressure, boiling point and molar enthalpy of
vaporization. Finally we will briefly study liquid crystals, their types and their applications.

Objectives

After studying this unit, you should be able to :
® explain the structure of liquids,
® state the significance of surface tension and viscosity of liquids,

®  discuss the qualitative dependence of vapour pressure, boiling point and molar enthalpy

s+ of vaporization of liquids on the molecular interactions,
® state and explain Troaton’s rule, and
® discuss the types of liquid crystals and their applications.

4.2 COMPARISON OF LIQUIDS WITH GASES AND
SOLIDS

We can obtain a liquid by heating a solid or by cooling a gas under certain conditions.
Therefore, liquid state is in between solid and gaseous states. In a solid, the particles have
only vibrational motion about their equilibrium positions. The strong intermolecular forces
present in a solid crystal are responsible for the restricted motion of the particles and their
orderly arrangement.

As a result, a solid has a definite shape. In contrast to this, the molecules in a gas are free to
move randomly and have a disorderly arrangement. The gases can expand or contract to
conform to the volume of the vessel. Hence, the gases have no definite shape or volume.
The characteristics of a liquid lie between the extremes of a gas and a solid. The particles in
a liquid are free to move from one point to another. In this respect, it ressmbles a gas. The
ability of a liquid to flow enables it to assume the shape of its container. Yet it never
expands or contracts to fill the container and thus resembles a solid. Let us now examine
the structural aspects of liquids.




4.3 STRUCTURE OF LIQUIDS

The particles in a liquid are not as much orderly as in a solid; also not as much disorderly as
in a gas. To establish this, we cite the following three pieces of evidence :

Volume Change During Fusion and Vaporization

A pure solid melts to give a liquid at a sharp‘temperature. This process is called fusion. It is
generally seen that during fusion, volume increases by 10%. This implies that a substance
retains its orderliness to a considerable extent during fusion. On the contrary, in the
conversion of a liquid into vapour at its boiling point (known as vaporization), the volume
increases 100-1000 fold. This large increase in volume during vaporization indicates that
the particles are changed into a more disorganised state.

Molar Enthalpies of Fusion and Vaporization

The amount of heat required at constant pressure to convert one mole of a solid into liquid
at its melting point is called molar enthalpy of fusion (AH?.). Similarly, the amount of heat
required at constant pressure to convert one mole of a liquid into its vapour at its boiling
point is called the molar enthalpy of vaporization (AH",,). The values of AH%,, AH',, and
boiling points (BP) are given in Table 4.1 for some substances. It is seen that AH\,, is larger
than AHY,, for all the substances. It requires more heat to convert a liquid into vapour than
to convert a solid into a liquid. It seems reasonable to assume that a large heat absorption
during change of state is associated with increase in disorder. On this assumption, we can
think that a liquid has considerable measure of orderly arrangement as compared to a gas.

Table 4.1: Molar Enthalpies of Fusion (AH° ) and Vaporization (AH® .,) and Boiling Points (BP) of the

Substances
Substance AH’ /K mol™ AHY.,/kJ mol”! BP/K
Methane 10 8.2 115
' Ethane 29 14.5 : 184.4
Propane 35 - 190 231
Diethyl ether ’ 7.6 : 269 308
Ethanol 5.1 39.1 T 351
" Water 6.1 40.7 373
Benzene 10.1 311 353
Mercury 25 59.2 630
Silver 122 259 2430
Aluminium : - 109 292 i 2720

X Ray lefractlon by Liquids

In the next unit, we shall study that the X-ray diffraction by a solid crystal gives rise to sharp .

diftraction pattern. The sharpness of diffraction pattern is an indication of the orderly
arrangement of atoms or ions in the crystal lattice. Gases, on the other hand, do not give

. rise to diffraction lines with X-rays. This is again due to the random arrangement and
movement of molecules in a gas. Liquids do give diffraction pattersis with X-rays, although
the lines are diffuse (i.e., not quite sharp). The diffuse diffraction pattern makes it clear that
the order in the arrangement of particles is only partial but not total. Experimental data

" indicate that the first few neighbours of £ particle in a liquid are at fairly well-defined
distances; the neighbours farther away are randomly distributed. This means that the
arrangement of particles in a liquid exhibits short range order and long-range disorder. The
number of nearest neighbours around the particles in different regions of a liquid is not the
same. A model for the structure of liquids is shown in Fig. 4.1.

The main aspects of this model are summarised below :

® The particles in a liquid are fairly close.

® These particles have higher kinetic energy (and hence speed) compared to those in a
solid.

¢ Because of their speed, the individual particles occupy more space, and a 11qu|d is less
dense than the corresponding solid.

® To explain the relative densities of liquids and solids, it is further assumed that there are

some voids between the ‘molecules.

Liguids

Water and a few other substances
ere exceptional in having a lower
volume per unit mass (and higher

+ density) in liquid state than in solid

state. We shall discuss this aspect in
the unit on phase equilibria.

The state of a substance under gives
temperature and pressure is decided
by the intermolecular forces

operating in a substance. Fusion,
vaporizatior etc. are dependent upon
the external forces (such as pressurg)
applied on a substance.

Heat absorbed by a substance at
constant pressure at its melting or
boiling point is used, not to increase
the temperature but to increase its
disorderliness. In the language of
thermodynamics, such heat
absorption during change of stite
increases the entropy of the
substance. We shall discuss this in
Unit 8. Some correlations regarding
AH®.,; are given in Secs. 4.5 and 4.6.

X-ray diffraction is the scattering of
X-rays from a regular array of
atoms, molecules or ions,

Fig. 4.1 : A modd for the
structure of liquids
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In a gravity-frce environment, as in
the space shuttle in the orbit, the
shape of liquid drop is governed by
surface tension alone. If gravitational
forces were to be absent on earth,
the flat surface of water bodies like
rivers and oceans would appear as

an array of spherical drops.

. :.:.{}"E;f f.:.

Fig. 4.2 : Molecules in the bulk
and on the surface of liquid being
attracted by neighbours.

The values of surface tension given
in Table 4.2 are obtained when the
iiguids are in contact with their
vapours and air.

If messurement is made in presence
of some other gas instead of air, the
values will be different.

\

® These voids enable the liquid to flow.
® Particle close to one of the voids behaves like a particle in a gas.
Based on the above, answer the following SAQ.

'SAQ1

Liquids are less compressible than gases. State the reason.

4.4 SURFACE TENSION AND VISCOSITY

Having discussed the structure of liquids, we now take up the study of the properties of
liquids. Three of the characteristic properties of liquids are :

@ Possession of a sharply defined surface

e  Ability to flow

® Tendency to vaporize into space above the surface and to exert vapour pressure.

These properties are related to the strength of intermolecular forces in liquids. We now
discuss surface tension and viscosity of liquids.

Surface Tension

The presence of a surface in a liquid gives rise tc the phenomenon of surface tension. Let’s
see how it arises. In the absence of external forces, liquids form spherical drops
spontaneously. This is facilitated by the fact that for a given volume, a sphere has a smalier
surface area than any other shape. This fascinating phenomenon is one of the reasons for the
spherical shape of earth, sun, moon, etc. Let us explain the origin of forces operating to
minimise surface area.

A molecule in the interior of a liquid is attracied by all the molccules surrounding it. It is
pulled equally in all directions. But a molecule at the surface of a liquid is attracted only by
molecuigs below 1t (Fig. 4.2).

Therefore, the molecules cn the surface of the liquid are drawn inwards trying to minimise
the surface area. Because of this tendency of a surface to contract, each point on the surface
of the liguid is under pressure like a stretched rubber membrane. The resistance of a liquid
to increase its surface area is correlated to its surface tension. It is defined as the energy
required to increase the surface area by one unit by moving the molecules from the interior
of the liquid to the surface. It is also defined as the force per unit length perpendicuiar to a
liguid surface. Corresponding to these two definitions, SI units of surfacc tension are J m
and N m™' (which are, of course, equivalent). It is represented by the Greek leiter -y.
Increase of temperature increases the thermal motion of the molecules in a liquid; this
opposes the effect of intermolecular forces. Thus as temperature is raised, the surface tension
decreases.

The values of surface tension of some liquids are given in Table 4.2.

Table 4.2 : Values of Surface Tension () of Some Liquids a¢ 293 K

L—iqbf 10° X /N m
T ; 3
 Water 7.28
Benzene 289
Carbon teirachloride 2.64
Chloroform 267
Mercury 46.5

Some of the factors which influence the magnitude of surface tension are given below:

® Molecules having strong hydrogen bonds have high surface tension. The surface tension
of water, for example, is about three limes higher than that of nonpolar liquids like
carbon tetrachloride.




® Metallic bonding also leads to high surface tension. For example, the surface tension of Liguids
mercury is more than six times that of water. ) :
® The dispersion forces are quite significant in molecules with large atoms and are often t
more important thap*dipole-dipole forces. In fact, surface tension of carbon :
tetrachloride is only slightly less than that of chloroform; the effect of London forces in
the former is nearly equal to the combined effect of London and dipole-dipole forces in
the latter. §

Intermolecular forces give rise to capillary action. It is the rise of liquids through a
capillary (narrow glass) tube (Fig. 4.3a). Two types of forces—cohesive and adhesive—are

responsible for this property. The cohesive forces are the intermolecular forces among the Cohesion is duc Lo atiraction

between molecules of one or more

molecules of a liquid as discussed in Unit 3. Adhesive forces exist between the liquid liquids, while adhesion is attraction

molecules and the molecules in the capillary walls. For example, glass contains many between the molecules of a liquid

oxygen atoms; each oxygen atom (with partial negative charge) atiracts (the positive end of) ~ and the molecules in the wall of the
-a polar molecule, such as water. : capillary.

The adhesive forces enable water to *“‘wet” the glass. The adhesive forces acting upward fpdull j
up a water column inside a capillary tube when the latter is in contact with water. The
height of the water column inside the capillary tube is such that the adhesive forces acting
upwards balance the cohesive forces (in the form of weight of water column) acting
downwards. The height of the water column inside the capillary tube has been found to be
inversely proportional to the radius of the tube. Hence only in tubes of small radius, the
capillary rise is meaningful.

The concave shape of the meniscus of water in a glass tube indicates that the adhesive The phenomer.on of surface tension
forces of water towards the glass are stronger than its cohesive forces. A metallic liquid such is important for understanding
X . . . . chromatography, colloids, catalysis,
as mercury (Fig. 4.3b) shows a lower level in a capillary tube and a convex meniscus. This detergent action of s0aps, £(c.
behaviour is characteristic of a liquid in which the cohesive forges between its molecules are ‘
stronger than the ddhesive forces between the molecules and glass. - Some of the familiar instances of
’ capiliary action are :

® ‘Movement of water through the
soil.

® Rise of nutrient dissolved water
from the roots to the tree top.
® Penetration of water into cement
structure.
(w)
Fig. 4.3 (a) : A polar liquid such as water rises in a capillary tube—water has concave meniscus in a glass tube -
(b) : A metallic liquid such a5 mercury shows a depression of level—mercury has convex meniscus,
Viscosity H
Another property of liquid that depends on intermolecular forces is viscosity; it is a H ([: o0—H

measure of the resistance to flow. A liquid which has higher viscosity, flows slowly. It is l ;
represented by the Greek letter n (eta). Its unit is Pa s. It decreases with temperature. The H—~C—O—H

viscosities of a few liquids are given in Table 4.3. | .
H—C—0—H
Table 4.3 : Viscosity (n) of some liquids at 298 K I!I
Liquid - /Pas
a - : i Glycerol

Water 8.90 X 10™
Benzene 60 X 10
Glycerol 0.945

- Chloroform . - 47 X 10

Liquids with larger intermolecular’ forces ﬂow slowly and are called viscous liquids.
Hydrogen bondmg is particularly important in this respect because it can bind neighbouring » 53.




1 Statas »f Matter molecules together much strongly. This accounts for the fact that water has higher viscosity
o than benzene and chioroform, which have no hydrogen bonding. Glycerol has very high
’ ~ viscosity, mainly due to numerous hydrogen bonds it can form.

Molecular arrangement also could cause high viscosity: Heavy hydrocarbon oils and grease
are not hydrogen bonded but are highly viscous. Their viscosity arises partly from London
forces between molecules and partly because the long chainlike molecules become
entangled with each other (Fig. 4.4) like cooked nocdles served in a plate.

i
P4
[
.
i

_ Viscosity measurements help in
evaluating relative molecular masses

of polymers..
Fig. 4.4 : The molecuies in the heavy
hydrocarbon oit entangled 10gether.
Use the above discussion on surface tension and viscosity to answer the following SAQ s.
SAQ2
For water-proof coating of wood, paraffin wax is used. Explain the reason.
{Hint : Paraffin wax is a mixture of solid hydrocarbons]
SAQ 3
Among the alkanes—octane (CsHis) nonane (CsH»o) and decane (CioH2;)—which is
expected to have the highest viscosity?
4.5 VAPORIZATiON
The escape of molecules from the liquid surface to form the vapour is called the
vaporization or evaporation. To have an understanding of this process, we must know how
vapour pressure, boiling point and molar enthalpy of vaporization are connected among
themselves and also to the intermolecular forces.
4.5.1 Vapour Pressure
The molecules in a liquid move constantly. During this motion, the molecules with
@ ' ®) sufficient kinetic energy can jump out into the space above the liquid as vapour. If the

liquid is kept in an open vessel, the molecules escape into the atmosphere and the liquid
keeps on evaporating. However, if the liquid is kept in a closed vessel, the number of

Fig. 4.5 : (a) Initially molecules are \ - - -
molecules in the vapour state increases at first (Fig. 4.5 a). They also start returning to the

transferred from the liguid to the

vapour phase; (b) at equilibrium liquid surface which is called condensation. The condensation rate keeps on changing till it
the rate of vaporizatiomis equalto  j5 equal to the rate of vaporization and the space above the liguid is saturated with vapour
the rate of condensation. (Fig. 4.5 b). The pressure exerted by a vapour in contact with its liquid at a given

temperature’is called its vapour pressure.

} Vapour pressure of a liquid is commonly measured by introducing a liquid into a container;
54 the container is closed and connected to a U-tube containing mercury (Fig. 4.6)




Flg. 4.6 : Vapour pressure measurement.

The difference in the heights of mercury columns (k) is measured in mm of Hg umt. The vapour
pressure in Si units can be calculdted using the following equivalénce statement :.

760 mm of Hg = 1.013 X 10° Pa

(Recapitulate the unit conversions discussed in Sec. 1.6 of Unit 1).

The vapour pressure of some liquids are given in Table 4.4.

Table 4.4 : Vapour Pressures of Seme Liquids 2t 298 K

Substance Vapour pressure/'Pa
Mercury 0.227
Water 3.17 X 10
Ethanol 7.85 X 10°
Diethyl ether 5.90 X 10°
Benzene 1.26 X lO"(J

From Table 4.4, it can be inferred that the liquids having strong intermolecular forces do not
vaporize easily and their vapourpressures are low. Water, due to strong hydrogen bonding
has lower vapour pressure than ethanol and, the latter has lower vapour pressure than
diethyl ether. Metallic bonding signifies strong interaction among the atoms; as a result of
this, mercury has low vapour pressure. '

As the temperature of a liquid increases, the average kinetic energy of the molecules also
increases. The number of molecules escaping as vapour also increases. Hence, the vapour
pressure increases with temperature. To illustrate this, the vapour pressures of water are
given at different temperatures in Table 4.5.

Table 4.5 : Vapour Pressures of Water at Different Temperatures

Temperature/K ) Vapour pressure/Pa
T - # -
" 283 126X
293 o t 2.330 X 10° -
323 1233 X 10*
348 3.850 X 10°
373 1.013 X 10°

There is a quantitative relationship, known as Clausius-Clapeyron équation, between the
vapour pressure of a liquid and its temperature. We will discuss this in Unit'9. Let us now
define the boiling point of a liquid.

452 Boiling Point

The temperature at which the vapour pressure of a liquid eguals the external pressure is
called its boiling point. At this temperature. the vapour produced in the interior of the

Liquids

The addition of a nonvolatile solute
to a solvent causes lowering of
vapour pressure. This, and the
related effects would be discussed in
the unit on colligative properties.

A molecule of water 1s capable of
forming four hydrogen bonds; two
with the (two lone pairs of) oxygen
atom and two with two hydrogen
atoms. A molecule of ethanol can
form only three hydrogen bonds,
two with oxygen atom and one with
hydrogen atom. Water has stronger
hydrogen bonding than ethanol.
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Distillation is a procedure to
separate pure substances from a
solution using vaporization and
condensation.

Water has many abnormal but
useful characteristics. Most
strikingly, its large enthalpy of
vaporization enables water to
function as an effective coolant for
our planet as well as for our body.
Interestingly, the surface of the earth
and human body have both around
70% water content.
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liquid results in continuous bubble forraation that is characteristic of boiling. The .
temperature of a boiling liquid (even with the absorption of heat) remains constant untill all

the liquid has been vaporized.

The boiling point of a liquid.at 1.013 X 10° Pa (1 atm) pressure is called its normal boil{ng
point. The boiling points mentioned in this course are normal boiling points. A less volatile

. liquid (i.e., a liquid which has low vapour pressure at room temperature) is to be heated to
* a higher temperature so that its vapour pressure equals atmospheric pressure. That is a less

volatile liquid has a high boiling point. On the contrary, a more volatile Liquid (i.c., a
liquid having high vapour pressure at room temperature) needs to be heated less to make it
attain atmospheric pressure and it has a low boiling point. A glance at the boiling points
(Table 4.1) and vapour pressure (Table 4.4) of water and diethyl ether indicates that water
is less volatile and has higher boiling point; whereas diethyl ether is more volatile and has a
lower boiling point. '

Let us pow study the effect of external pressure on boiling point. The boiling point increases
as external pressure increases and the boiling point decreases as external pressure decreases.
This principle is made use of in distillation under reduced pressure (Fig. 4.7). It means
making a liquid boi! at a pressure lower, than atmospheric pressure. If a liquid has a high
boiling point and decomposes when heated, it can be made to boil at a lower temperature
by reducing the pressure. For reducing the pressure, a vacuum suction pump is used.

. Thermometer Water out

Condenser (for cooling the vapour)

Impure liguid
in a solution

» —» 1O Vacuura pump

Pure liquid

(-_—'—)

Fig. 4.7 : Reduced pressure distillation.

Distillation under reduced pressure is often used in the separation and purification-of
organic and inorganic compounds. A commercial application is that excess water content is
removed from many food products by boiling under reduced pressure. An alternate way of
looking at Table 4.5 is that it gives boiling points of water at different external pressures.
Thus, at a reduced pressure of 1.226 X 10° Pa (0.0121 atm), water boils at 283 K; the
boiling point of water is lowered by 90 K at this pressure. :

In Unit 3, we learnt about the correlation between boiling points and intermolecular forces.
It is interesting to note that intermolecular forces have similar effect on the boiling points
‘and the molar enthalpies of vaporization, if comparisons are restricted to similar
compounds. Let us examine Table 4.1 from this angle. Water has stronger hydrogen
bonding than ethanol; the boiling point and molar enthalpy of vaporization of water are
more than those of ethanol. Increasing intensity of London forces increases the boiling point
and molar enthalpy of vaporization among the alkanes. Effect of metailic bonding is clearly

seen in the high values of boiling points and molar enthalpies of vaporization of mercury,
silver and aluminium.

The parallel between the molar enthalpies of vaporization and the boiling points of liquids
led Trouton to suggest a relationship between the two quantities. Before studying Trouson’s
rule, organise your thoughts by answering the following SAQs.




' SAQ 4 Liquids
The vapour pressure of methanol is higher than that of ethanol at 300 K. Suggest a reason.

!
................................................................................................................................................... H_(,:__ on
SAQS H
Arrange the following compounds in the increasing order of bpiling points: Methanol
Ethanol, glycerol and ethylene glycol.
i
H—(i?—O-—l'l
H—-(IZ-—O——H
H
Ethylene glycol
4.6 TROUTON’S RULE
Trouton’s rule can be stated as follows:
The ratio of molar enthalpy of vaporization of a liquid to its boiling point is approximately
85Jmol 'K .
: AHO vap =1 gr-1
i€, —pp 85 mol K ‘ » . (4.1)
Trouton’s rule holds good for liquids in which hydrogen bonding is absent. The ratio,
AH° vap/ BP is also known as entropy of vaporization. It is a measure of disorderliness A hydrogen bonded liquid is more
gained by a substance due to vaporization. During vaporization, a hydrogen bonded liquid orderly in its molecular arrangement
gains more disorderliness as compared to a nonhydrogen bonded liquid; hence AH.,/BP than a nonhydrogen bonded liquid.
is more than 85 J mol™ K™' for hydrogen bonded liquids. For example, the values of g.:::ge :'.z;pon.unoq; t?:f '":’g”“ n
. AH®..,/BP for water and ethyl alcohol are 109 and 112 J mol™' K™/, respectively. bon;edrl:.q:‘sj':h':: :; 3 fycrogen

. . o . hyd bonded liquid.
For nonpolar liquids, Eq. 4.1 is useful in calculating the boiling point or molar enthalpy of nomhycrogen bonded Hiqu!

vaporization, if either is known. Let us calculate the molar enthalpy of vaporization of
benzene; its boiling point is 353 K. Using Eq. 4.1.

AH’.p = 353 K X 85 Jmol ' K™
= 30 kJ mol™
The experimental value as given in Table 4.1 is 31.1 kJ mol .

So far, we have studied the characteristics of liquids. There is a class of compounds, known as
liquid crystals, which flow like liquids and have structural similarity to solids. We take up
the study of liquid crystals in the next section; before going through the next section, it is
better you try the following SAQ.

SAQ6
Celculate the molar enthalpy of vaporization of carbon tetrachloride which boils at 350 K.
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4.7 LIQUID CRYSTALS

Gases and liquids are isotropic. This means for any gas or liquid, the value of any of the
physical properties such as refractive index, coefficient of thermal expansion, electrical
conductivity, speed of sound etc., is same in all directions. In contrast to this, a crystalline
solid when examined as an individual crystal (or a single crystal) behaves in a different way.
Depending upon the direction in which the crystal is kept during measurement, it may have
a different value for its physical properiies mentioned above. Such a single crystal is
anisotropic. In some casez differext faces of a crystal may show different catalytic activity.
Another class of compounds which are anisotropic are liquid crystals. Let us first define the
term ‘liquid crystal’ and then see how its anisotropy gives rise to interesting applications.

Some organic compounds often have two melting points. On heating such a crystal, it melts
into 2 turbid liquid at a definite temperature; and on heating further, the turbid liquid
becomes clear at another temperature. The turbid liquid is called ‘liquid crystal’.

A number of compounds of the following type exist as liquid crystals :

A O— B~-—®C ; A, B and C are substituents or carbon chains,

An example is p-azoxyanisole.

HzCO-@—N=N——©-OCH3
y

(0]
p-Azoxyanisole
These molecules have a length which is larger than breadth. In general, the arrangement of

molecules in liquid crystais resembles a pile of cigars. Depending upon the structural pattern
of molecules, liquid crystals can be classified as follows:

Smectic liquid crystals have molecules arranged in parallel layers or planes. These planes
are at equal distances. The molecules in all the planes point to the same direction. That is,
the molecules have same orientation. The only difference between a solid crystal (Fig. 4.8a)
and a smectic liquid crystal (Fig. 4.8b) is that in the former, the particles are arranged at
regular intervals within a plane; whereas in the latter it is not so.

LTI
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(a)

Arrsagement in equidistant

planes; regularity within
planes—a single crystal.

The optical (opaque or transparent)
nature of 2 nematic liquid crystal
depends on the way the molecules

are oriented.
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(b) © (d) (e)
Same orientation, Same orientation; absence Multiple layers with successive Neither orientation nor
arrangemient in eguidistant of planar arrangement- twist; same orientation within a planar srrangementi—liquid
planes; no regularity within nematic liquid erystal layer-cholesteric liquid crystal {giving rise to isotropy)

planes-smectic liquid crystal
Fig. 4.8 : Struciure of a single crystal, liquid crystals and liquid.

Nematic liquid crystals have all the molecules with the same orientation (Fig. 4.8c). Unlike
in smectic type, the molecules are not arranged in planes in nematic liquid crystals.
Application of an electric field causes a change in the orientation of the molecules iz a
nematic liquid crystal. A change in molecular orientation, causes a change in optical
properties. It is this anisotropic character that makes a nematic liquid crystal useful in LCD
(liquid crystal display) watches and calculators. '

Cholesteric liquid crystals have a multiple layer structure, but each sucuessive layer is-
inclined or twisted slightly. Fig. 4.8d illustrates the cholesteric liquid crystal structure. For
comparison, the typical disorderly arrangement of molecules (accounting for isotropy) in a
liquid is shown in Fig. 4.8e.

The successive twist in structure makes the cholesteric liquid crystals coloured. A minute
change in temperature causes a change in the amount of twisting. It results in reflection of




different wavelength of visible light; that is, the colour changes with temperature. This
anisotropic nature facilitates cholesteric liquid crystals being used in thermometers and in
devices for indicating the temperature of the skin or of electrical devices. Temperature
changes as small as 0.001 K can be detected using sensitive cholesteric liquid crvstals. This
class of liquid crystals received their name from the fact that many derivatives of cholesterol
pertain to this type. )

CHs
CH3
CH; —~CHjy

CH;

HO
Cholesterol

We see that a difference in the orientation of molecules in a nematic or a cholesteric liquid
crystal causes a difference in its optical properties, thereby pointing to its anisotropic nature.
On the basis of what you have studied so far, answer the following SAQ.

SAQ7
In what way, an isotropic substance is different from an anisotropic substance?

....................................................................................

4.8 SUMMARY

In this unit we studied the characteristics of liquids. The model proposed for the structure of
liquid was discussed. Surface tension and viscosity of liquids were explained and the
dependence of these characteristics on intermolecular forces was brought out. We discussed
the properties of liquids such as vapour pressure, molar enthalpy of vaporization and boiling
point. Trouton’s rule was stated and explained. The tefrms isotropy and anisotropy were
defined. The applications of anisotropic character of liquid crystals were illustrated.

4.9 TERMINAL QUESTIONS

(1) Comment on the fact that the densities of solid, liquid and gaseous nitrogen are 1.026,
0.8081 and 1.251 X 107 kg dm >, respectively.

(2) In a polythene tube, water meniscus is convex. Explain.

(3) Explain the reason for the anisotropy in the optical properties of nematic and
cholesteric liquid crystals.

(4) Molar enthalpies of vaporization of benzene and naphthalene are 31.1 and 44 kJ mol ™.
Explain.

(5) Atroom temperature, among water, methyl cyanide and methanol, which is expected
to have the highest surface tension? State the reason.

'(6) Why the viscosity of water at 373 K is one-sixth of its viscosity at 273 K?

(7) The molar enthalpy of vaporization.and boiling point of ammonia are 23.3 kJ mol™’
and 240 K, respectively. Does it obey Trouton’s rule?

Liguids

The colour of a cholesteric liquid
crystal changes with the change in
twist-pattern of layers in its

structure.
H
|
H—C—C=N
|
H
Methyl cyanide

59




States of Matter

4.10 ANSWERS

Self Assessment Questions

(1) Gases have more free space than liquids; hence, it is easier for gases to be compressed
or expanded.

(2) The cohesive forces between the molecules of water are stronger than the adhesive
forces between water molecules and the hydrocarbon molecules in wax. Hence water
does not “wet” the surface of wax.

(3) Decane is expected to have the highest viscosity due to increased London forces with
chain length.

(4) Although methanol and ethanol are hydrogen bonded, the latter has higher London
forces due to higher molar mass. The larger intermolecular forces in ethanol account
for its lower vapour pressure than that of methanol.

(5) The boiling points increase in the following order due to increasing hydrogen bond
strength and London forces;
Ethanol < ethylene glycol << glycerol

(6) AH., = 29.75 kJ mol '

(7) In an isotropic substance, the molecular arrangement is disorderly; the value for any
physical property is same, irrespective of direction. In an anisotropic substance, the
molecular arrangement is orderly and the values of some physical properties depend
on the direction.

Terminal Questions

(1) The free space is the highest in gas, less in liquid and the least in a solid.

(2) The adhesive forces between water and the hydrocarbon molecules in polythene are
weaker than the cohesive forces between water molecules.

(3) In nematic and cholesteric liquid crystals, there is some orderliness in the arrangement
of molecules. The optical characteristics depend on a particular mode of arrangement
of molecules. Any disturbange in the form of temperature or electricity, affects the
arrangement pattern in the liquid crystal and causes a change in its optical
characteristics.

(4) Naphthalene has higher molar mass than benzene and hence, has greater London
forces; this is reflected in its higher AH",, value.

(5) Due to strong hydrogen bonding, water must have the highest surface tension among
the three liquids.

(6) With temperature increase, the number of voids increasés. The molecules can move
easily leading to an increase in the flow rate; the viscosity decreases.

(7) The value of AH?,, /BP = 97.1 J mol™' K™' for ammonia; it.doesn’t obey Trouton’s
rule due to hydrogen bonding.
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UNIT 5 SOLID STATE

Structure

5.1 Introduction
Objectives
5.2 Definition of Terms Used in Crystal Systems
Lattice
Basis
LUnit Cell
5.3 Bravais Lattices and Crystal Systems
Cubic System Geometry
Bravais Lattice
5.4 Crystal Planes and Miller Indices
5.5 X-rays and Crystal Structure
Principles of Diffraction
Bragg Law and Bragg Equation
5.6 Experimental Method for the Determination of Crystal Structure
Powder Method
Some Experimental Findings
5.7 Determination of Unit Cell
Number of Net Atoms in a Cubic Unit Cell
Density Calculation
Experimental Method
5.8 Nature of Bonds in Solids
5.9 lonic, Covalent and Molecular Crystals
lonic Crystals
Covalent Crystals
Molecular Crystals
5.10 Commonly Encountered Metallic Structures
5.11 Semiconductors
Intrinsic Semiconductors
Extrinsic Semiconductors
5.12 Summary
5.13 Terminal Questions
5.14 Answers

5.1 INTRODUCTION

In the earlier units,. we had drawn a comparison amongst the three states of matter—solid,
liquid and gas. These states of matter were described in terms of a few physical properties
like “*solids are denser than liquids and gases” or “it takes enormous pressure to compress a
solid even by a fraction of its volume”, etc. However, instead of defining the states of matter
in terms of the physical properties, it is much more useful to think in terms of the binding
forces (ionic, covalent, van der Waals, etc.,) involved in a particular state imparting
different properties to solids, liquids and gases. Thus, solid state could be defined as a state
of a substance in which the neighbouring particles (molecules, atoms or ions) are close
enough for van der Waals forces to operate. As a consequence, the motion of the molecules
is restricted with respect to its neighbours.

The solids can be of two types — crystaliine and ameorphous. Let us explain what a
crystalline solid is. Those solids which are formed due to regular repetition of identical
building blocks are called crystals. It is like having a collection of identical bricks which
could be arranged in some regular fashion to construct a wall. On the other hand, there are
solids which do not appear to have any regular internal arrangement in every part and thus
do not show regular shape; these are called amorphous solids. Amorphous solid means a
solid without regular form. Glass, polyethylene as in plastic bags, etc., are common
examples of amorphous substances. Though the study of amorphous substances is also quite
useful and interesting, we shall confine ourselves to the study of the crystalline solids in this
unit.

Different crystalline structures are associated with different physical properties. Hence, we

discuss crystal forms and crystal structure determination method in this unit. Further, the

theories of metallic bonding and semiconductors are also explained with particular reference

to electrical conduction. The information obtained from crystal structure studies could help us .

in understanding the physical and chemical properties of solids. - 6l
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Atom is used in general sense in this
unit; it stands for an atom or an ion
or a molecule.

A parallel net-like arrangement of
points in space is known as lattice.

Whenever there is a group of atoms
around a lattice point, then the basis
_ is defined.
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Objectives \

After studying this unit, you should be able to:

define lattice, basis, unit cell, primitive and nonprimitve cells,

describe the seven crystal systems and the fourteen Bravais lamces

identify the face, corner, edge, face-centre and body-centre in a cube,

state the crystal planes in terms of Miller indices,

state Bragg law,

describe the determination of crystal structure by X-ray diffraction method,
determine the type of unit ceil based on experimental and calculated values of density,
explain the types of bonds in solids,

discuss the structures of some ionic, covalent and metallic crystals, and,
describe the types of semiconductors.

5.2 DEFINITION OF TERMS USED IN CRYSTAL
SYSTEMS

t. .
We f{ave already seen that a crystal is defined in terms of a regular and repetitive - -
arrangement of particles (atoms/ molecules/ions) in space. In order to understand crystals
and their structures, we encounter a few new terms. These terms form a kmd Of '
crystallographic language. Let us now look at the definitions of some of these terms.

5.2.1 Lattice .

Lattice is defined as an arrangement of geometrical points in a definite pattern in space
(Fig. 5.1a). It resembles a scaffold ¢a framework) erected for the construction of a building.
Putting it in a simpler way, one can define a lattice as a regular periodic arrangement of
points in space.

(a) ©y

Fig. 5.1 : Representation of 2) lattice in two dimensions.b) besis (with two atoms), c) crystal structure,
showing the basis of two atomsmrehﬁonmwkep.ﬁs.

5.2.2 Basis

When atoms are attached regularly to each lattice point, it-forms a crystal. However, instead
of an atom, we can have a group of atoms attached to each lattice point. The group is called
a basis (Fig. 5.1b). The basis consists of the atoms, their spacings and internal bond angles.
Every basis is identical in composition, arrangement and orientation. Fig. 5.1c shows the




crystal structure where you can recognise the basis and imagine the lattice. For a large
number of crystals, the basis has only a small number of atoms but in a few instances, the
basis exceeds 1000 atoms. For example, the basis in iodine crystal is I molecule whereas in
the ice crystal, HO molecule is the basis.

5.2.3 Unit Cell

The unit cell is the fundamental unit in a crystal. The repetitive arrangement of unit cells in
three dimensions produces a crystal just as a wall is built from identical bricks. In other
words, a unit cell is the smallest unit of a crystal which on translational displacement in
three dimensions will produce the crystal. A unit cell chosen to represent the crystal may be
quite different in size and shape from another unit cell which may represent the crystal
equally well. The main point is that whatever the unit cell may be, it should be the simplest
representation and, when repeated in three dimensions, it should produce the crystal.

fig. 5.2 : Cheice of unit cell.

Fig. 5.2 shows four rows of spheres-—representing atoms—in a closely packed structure in
two dimensions. If we join the centres or any other points, say, gaps between the spheres, of
differgnt atoms in-successive three rows, we get a cell of the typé a, b or ¢. All the other
rows of atoms.are a repetition of the first three rows. It.is immaterial whether the unit cell
chosen is a, b or c, but it is the simplest representation which on repetition in two, -
dimensions will produce the entire assembly as shown in Fig. 5.2. The situation_in a crystal
is somewhat similar to the above except that the unit cell and the resulting crystal are three
dimensional. Thus; we can say that the simplest repeating unit in a crystal is called a unit
cell. = 2 : : h

It is true that the unit cell must have some regularity in struciure. Does any type of regular
shape constitute a unit cell? The answer is no. To undérstand this, let us consider the,
covering of a floor space by tiles without leaving a gap. Can we use any type of tiles—

Fig. 5.3 : Of all the regular polygons, only triangles, squares and hexagons can fill a floor space withow: gap.
Filled-in space is deaoted by grey area. . . ..

Solid State

Identical repetition of basis about
each lattice point in three
dimensions gives a crystal structure.
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A paralielepiped is a three
dimensional model of a

parallelogram.

The cell-edge lengths (a, b and ¢) are
the repeat distances in a unit cell.
Any point in a unit cell can be
represented by coordinates which are
fractions of 4, b and c.

triangular, square, pentagonal, hexagonal, heptagonhl or octagonal? Agains the answer is no.
You can cover the floor space completely with triangular, square or hexagonal tiles but not
with pentagonal, heptagonal or octagonal tiles (Fig. 5.3). Note the gaps in the interior floor

space when pentagonal, heptagonal or octagonal tiles are used.

Just as tiles with specific shapes are useful in covering the floor space completely, unit cells
with specific symmetry properties constitute the crystal lattice. The course on Spectroscopy
deals with symmetry properties in detail.

SAQ 1

What is the essential characteristic of a unit cell?

5.3 BRAVAIS LATTICES AND CRYSTAL SYSTEMS

The basic shape of 2 unit cell is described by a parallelepiped. (Fig. 5.4a).

A unit cell has three coordinate axes, a, b and ¢ (rote the bold letters). The cell-edge

lengths in the threc axes are g, b and ¢ (note the italicised letters), respectively (Fig. 5.4b).

The angles between a and b axes, b and ¢ axes and ¢ and a axes are v, a and 8,

respectively. The quantities g, & and ¢ are called lattice parameters or unit cell parameters.

(a)

—_—
,ﬂ

(b)
Fig. 5.4 : a) parallelepiped; b) three coordinate axes, cell-edge lengths and the angles between axes.

A4
&

Based on the relationships among the axial angles and the edge-lengths, there are seven

crystal systems as given in Table 5.1.

Table 5.1 : The Seven Crystal Systems

Systems Axes Angles Examples
Cubic a=b=c a=f8=y=90° NaCl, CsCl
Tetragonal a=b# ¢ a=B=vy=90° TiO; (rutile)
Orthorhombic a#b#Fc a=p=vy=9° CdSO,, HgBr:
Rhombohedral a=b=c a=B=vy#N° CaCO; (calcite)
Hexagonal a=b#c a=B=90%y=120° SiO;
Monotlnic a#b#*c a=y=90%8#90°  KIO; NaHCO;
Triclinic a#*b#c a#EB#y NaHSO,, CuF,

5.3.1 Cubic System Geometry

Of the seven crystal systems, we are particularly interested in cubic system due to its
simplicity and symmetry. A cube has the same value for all the three lattice parameters
(@ = b = ¢). We must understand the geometry of a cube. For this purpose, imagine that



you are sitting in a cubical room. Each wall (including floor and ceiling) of your room is . Sofid State
called.a face. A cubical room has six faces—four walls, the ceiling and the floor. You can

consider the ceiling and the floor as horizontal walls! For a cubic crystal, the cell-edge
: . lengths are ihe same along the three
Each point where three faces of a cube (or three wall¥ in your room) meet is called a axes and are represented as a.

corner. A cube has eight corners and these are indicated by A to H in Fig. 5.5a.

Each face has four corners. By joining the corners of a face diagonally, two face diagonals In_;{ABC, /ABC = 90° .

are obtained. For example,.in Fig. 5.5b, the lines AC and BD (obtained by joining A and C . Lenjth of face diagonsi, AC
or B and D, respectively) are two of the twelve face diagonals in a cube. The centre point of

AB’ + BC’
a face where the two face diagonals meet is called a face—centre one of the six face-centres =122
is indicated by M in Flg 5.5b. . " In AACG, /ACG = 90°.
. (See Fig. 5.5¢)
H 7. G Length of the body diagonal, AG
g A ' , , " = VAC + CG’
. : 6. . = m
E ; - ‘  TaV3

13 § |

[ '

12 . i

H 5 |10

I e s
v ;
L
A B
(a)
G
edge a
A » ) ©

Fig. 5.5 : a) Eight corners in a cube indicated by letters A to H—each corner is marked by red dot; twelve
edges indicated by number 1 to 12} b) bottom face ABCD of the cube shown; AC and BD are the face
diagonals and M is face-centre; c) The right-angled AACG.
By joining any two corners which are not in the same face,=a body diagonal is obtainad. ‘
There are, four body diagonals in a cube-—AG, BH, FD and EC in Fig. 5.5a. All the body i
diagonals meet at the body-centre. The definitions of face, corner, edge, face-centre and
body-centre apply to other crystal systems also.
5.3.2 Bravais Lattice
Some crystal systems, may have one or more types of lattices depending on the number of
lattice points. If there are lattice points only at the eight comers of a unit cell, it is called a
simple or primitive {P) cell. A cell which has lattice points at the eight corners and the six face
centres is called a face-centred (F) cell. A tell that has eight lattice points at the corners and
two more at the centres of.a pair of any two opposite faces is called an end-centred (C)-cell. :
If a cell has eight lattice points at the corners and one at the body centre, it is called a body- A non-Bravais lattice structure is
centred (/) celi. The unit cells of the type F, C and [ are called nonprimitive cells. Based on composed of two or more |
the presence of lattice points in the seven crystal systems, there are fourteen Bravais lattices; sublattices. . . i

these are given in Fig. 5.6. 65
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Cubic
Simple (P) Body-centred (J) Face-centred (F)
Monoclinic
Tetragonal
Simple (P)
Orthorhombic
Simple (P) End-centred (C)
Triclinic
Rhombohedral

Fig. 5.6 : Fourteen Bravais Lattices.

Of these Bravais lattices, we shall consider simple cubic (sc), body-centred cubic (bcc) and
face-centred cubic (fcc) lattices only. In the next section, let us see how to represent the
crystal planes.

SAQ2 - ) ,
Describe the following : simple cubic, body-centred cubic and face-centred cubic crystals.

5.4 CRYSTAL PLANES AND MILLER INDICES

Crystal planes are represented by certain numbers known as Miller indices. These indices
are determined in the following way :

i) Find the intercepts of a crystal plane on the axes, a, b and ¢ in terms of cell-edge

lengths @, b and c. Suppose that a crystal plane makes intercepts 3a, 25, 2c as shown in
.Fig. 5.7. ‘
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* 3 Fig. 5.7 : Miller indices.

i) Divide the intercepts by the respective cell-edge lengths (@, band . For the crystal

2 .
plane in Fig. 5.7, this step gives éag , —lv?-* ?-cﬁ i, 3, 2, 2 as the answer.

ii) Take the reciprocal of the above numbers. Corresponding to Fig. 5.7, this step gives

LI as the answe
ey —
322 -

iv) Finally reduce the above fractions to the smallest integers having the same ratio. Write
* these numbers enclosed in parantheses without comma signs; these are the Miller
indices of the given crystal plane. For the illustration in Fig. 5.7, the Miller indices are
(233); this is to be pronounced as two three three plane.

Miller indices are generally represented as (hkl). You will notice that the Miller indices are
defined in such a way that all equivalent and parallel planes are represented by the same set

of Miller indices. Thus, planes whose intercepts are 3a, 25, 2¢ or.a, -2?17 ) 232 or 9a, 6b, b, .
etc. are all represented by a set of Miller indices (233).

If a face is parallel to an axis, theoretically the corresponding intercept is equal to <. To .
illustrate this, let us draw a crystal plane of a cubic cell which makes intercepts a, &, o=,
That is, the plane is parallel to b and ¢ axes. Applying the above steps in order, we get the

Miller indices for this plane as (100). Remember —l— is equal to zero. The origin (0) and !
2

the axes directions are shown in Fig. 5.8a. The (100) plane is lndlcated in Fig. 5.8b.
Similarly, corresponding to the planes with intercepts g, a, * and @, 4, g, the Miller indices
are (110) and (111), respectively; these are shown in Figs. 5.8 ¢ and d, respectively.

Fig. 5.8 : a) The origin, O, the axes and the cell-edge length ¢;in 4 cubic cell; b) (100) plane; ¢) (119) plane;

d) (111) plane. 67




Syares of Matter We can calculate the distance between the adjacent planes labelled by the same Miller
indices (hkI), but no generalised formula can be written. The actual formula in a particular
case would depend upon the crystal structure. For example, the distance dhx between the
(hkl) planes of a cubic lattice is given by,

dra =

a

—— -~ (58.1)
Vi + K+

where a is the cell-edge length of the cell and (hkl) are the Miller indices. Thus, in

sodium chloride crystal, the ceil-edge length is 5.63 X 10 '°m. The distance between (111)-
planes is given by Eq. 5.1,

563X10"m _ 563 X10""m
VIE+ 1P+ V3

Eg. 5.1 could be used only for cubic crystals. For an orthorhomblc cell, the equation for dhk)
turns out to be,

1 = L 2 i 2 _1— 2
o _() +(b) +() | - (52)

Using Eq. 5.2, work out the following SAQ.

din = =325X10"m

SAQ3

An orthorhombic crystal has the following parameters:
a=82X10"ms=94xX10"mc=75%X10""m.
What is the distance between (123) planes?

5.5 X-RAYS AND CRYSTAL STRUCTURE .

" Crystal structures are usually-determined with the help of X-rays. In addition to X-rays,
other forms of radiations having similar properties—like a beam of neutrons or electrons—
could also be used. However, our discussion will be limited to the use of X-rays only. We
know that X-rays are eleciromagnetic radiations of wavelengths much shorter than either
visible or ultraviolet light. In 1911, Ewall showed that whenever the wavelength of
radiation is of the same order of magnitude as the size of the particle in a material, the
radiation would be diffracted by the particle. In 1912, Laue suggested that since the order of
the magnitude of the wavelength of X-rays and the crystal lattice distances are the same, we
should expect diffraction of X-rays by crystals. This was soon confirmed experimentally by
Friedrich and Knipping. Let us explain the principle of d|ffractlon, in general, and the
diffraction of X-rays by crystals, in pa"tncular

5.5.1 Principles of Diffraction

The amplitude is directly related to Diffraction pattern arises due to interference of waves. When the waves are in phase, the

] the intensity of the beam. intensity is increased, (this is known as constructive interference; Fig. 5.9a); when they are
out of phase (known as destructive interference), the intensity is decteased (Fig. 5.9b). If
there are two waves starting from a common source, their phase difference will be directly
proportiopal to their path difference.

(b)

Fig. 5.9 : Two waves (shown by dotted and solid Ilnes) gimg rise to a resultant (shown by red colour) : 3) -
. constructive interference (in-phase \vave—gnaur amplltude), b) destructive interference (out-of-phase
68 _ wave—mller amplitude). .




The bending of light round the edges of an obstacle is called diffraction. Consider a beam of
light passing througa two slits (S: and S:), cut near to each other on a screen and falling on
a second screen placed beyond the slits (Fig. 5.10). A series of dark and bright bands are
observed on the screen, which are due to the constructive and destructive interference of the
two beams passing through the two slits. When their amplitudes are in-phase, the intensity
is enhanced and when their amplitudes are out-of-phase, the intensity is decreased. Whether
the beams are in-phase or out-of-phase will depend on the path difference between the two
rays.

Light bcam%s In-phase
. 1

: S, Out-of-phase

Fig. 5.10 : In-phase and out-of-phase waves.

5.5.2 Bragg Law and Bragg Equation

If the path difference between the two rays is an integral multiple (# = 1, 2, 3,...) of the
wavelength of X-rays, then the two rays will be in-phase and the diffraction pattern will be
bright (i.e., with enhanced intensity), This is called Bragg law. Stated mathematically, for a
bright diffraction pattern,

path difference = n A - (53)

Bragg derived an equation (£g 5.9) for X-ray diffraction of crystals. This equation is named

after him. Some of the assumptions made by Bragg in deriving Eq. 5.9 are given below :

® The incident waves are reflected by parallel planes of atoms in a crystal such that the
angle of incidence is equal to the angle of reflection. This is called specular (mirror-
like) reflection.

¢ Each plane reflects only a fraction of incident radiation.

® When the reflections from parallel planes interfere constructively, the diffraction
pattern arises.

® The wavelength of the X-rays is not changed on reflection,; i.e., X-rays undergo elastic’
scattering on the lattice planes. Using geometric considerations, Bragg equation can be
derived easily.

Two parallel beams PA and QC are incident at an angle 8 on the paralle] planes EF and
GH (Fig. 5.11). The perpendicular distance (AC) between the two planes is d. The beams
are reflected along AR and CS at an angle 6. The path difference between the two sets of
incident and reflected beams (PAR and QCS) is the extra distance travelled by QCS as
compaied to PAR. To calculate the path difference, draw AB L QC and AD L CS.

P R .

Fig. 5.11 : The incident and the reflected beams and the two parallel lattice planes.

The bright and dark spots which
appear on a photographic film are
called diffraction pattern; it should
not be confused with diffraction
phenomenon which is just the
bending of light around the edges of
an obstacle.
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| Staces of Matter Path difference = (QC + CS) — (PA+AR) .~
. = (QB + BC) + (CD + DS) — (PA + AR)
=BC+CD . (54)
[~ QB = PA and DS = AR, being opposnte sides of the rectangles shown

by the shaded portions in Fig. 5.11 |

Since AC L GH, /ACG = 90° = /ACB + /BCG = /ACB"+ 6

[+ £QCG and /BCG are same as 6 ]
(ACB =90° — 6 - (5.5)

In the right-angled AABC, /BAC + /ACB + /CBA = 180°

Using Eq. 5.5, /BAC + (90° — ) + 90° = 180°
/BAC = 180° — (180° — 6) = 0 ‘

Also, 25 A ¢ = sin 6 or BC = ACsin 6
Since, AC = d,BC = d'sin 8 ... (5.6)
Similarly, we can prove that CD =d'sin 6 o - (5.7
! Using Egs. 5.4, 5.6 ard 5.7, o
P ‘path difference = 2d sin 6. . ..(5.8)
Again substitut..g in Eq. 5.3, we get, ' ' v
Bragg equation assumes that incidem nA = 2dsin § ) «(5.9)
g rovs arc refletied s"e:“l”ly Eq. 5.9 is known as Bragg equation. It is useful in crystal structure determination. In this
fgpircortike gk that INRIE ® of equation, A is the wavelength of X-rays used, d is the distance or the spacing between the
incidence is equal to the angle of . |
reflection. This assumption is planes. The value of n gives the order of reflection.
convincing only because it explains If n = 1, it is first-order reflection.

tha a 1 o © .
gosrmentllgesults. if n = 2, it is second-order reflection and so on.

After reading the above section you should be able to solve the following SAQ.

SAQ 4

If the separation between the lattice layers in a crystal is 404 pm and the wavelength of

X-rays used is 154 pm, what would be the angle of incidence at which reflection would
_ occur? Assume n = 1.

15.6 EXPERIMENTAL METHODS FOR THE
DETERMINATION OF CRYSTAL STRUCTURE

In any method of cry-ial structure determination, we must find out 8 as well as the intensity
of the diffracted bean.. There are basically three methods-—Laue, powder and the rotating
crystal—which are used for the determination of the above quantities. In this section we
shall discuss the outline of powder method only.

5.6. 1 Powder Method

I1i this method, we use a powdered sample containing mlcrocrystals which are ran-lomly

oriented. There are enough of microcrystals which will have the proper orientation for

diffraction. The diffraction beam corresponding to each scattering fans out in the form of a

cong, the axis of which lies along the incident beam as shown in Fig. 5.12. This gives rise to
70 . bright rings on a circular photographic film and is known as powder pattern. The X-ray




Incident beam

Cone of
diffracted rays

Fig. 5.12 : Powder method.

powder pattern for sodium chloride is shown in Fig. 5.13. Using powder method, the
- interplanar spacing can be found out since both A and 6 are known.

1

220
333511

=8 83
‘"N ™

[[{©Ne}

Fig. 5.13 : X-ray powder panern for sodium chloride.

<

5.6.2 Some Experimental Findings

Some noteworthy features in crystal structure determination by X-ray diffraction are given
below: - ~

® 1 appears that a set of planes is retiecting the X-ray beam.
®  The reflection takes place only for certain values of ; these values of & must satisfy
. Bragg equatlon (Eq. 5.9).
® It isacommon practice to set n = 1 in Eq. 5.9, unless specified otherwise. Higher
order reflections (n > 1) are weak.

The X-ray diffraction method leads us to the value of cell-edge length which can be used to.

determine the density of the crystal.

5.7 DETERMINATION OF UNIT CELL

The compaﬁson between the experimental and the theoretical values of densit)}' could help
us in determining the cubic cell type. First let us calculate the number of atoms belonging to
a unit celI in each type of cublc cell.

5.7.1 Number of Net Atoms in a Cubic Umt Cell

~ An atom at the body-centre of a unit cell belongs to that cell only (Fig. 5.14a). An atom on
the face-centre of a unit cell is shared by two unit cells (Fig, 5.14b) and thus, only half of
such an atom belongs to one unit cell. An atom at the edge-centre of a unit cell is shared by
four unit cells (Fig. 5.14¢); one-fourth of an atom in the edge-centre belongs to one unit
cell. But an atom at the corner of a unit cell will be shared by eight unit cells as shown in
Fig. 5.14d. Hence, we can say. that one eighth of an atom in a cornér belongs to a particular
unit-cell. Using this background let us calculate the number of net atoms present per unit
cell fora simple ;_ubu. face-centered cubic or body- centred cubic structure. ‘

Solid State
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Stures .f Matter

The number of net atoms per unit
cell are one, two and four in simple
cubic, bee and fec structures.

In this unit, the cell-cdge lengths apd
the distance between the planes are
given in m or pm units; but it is

c
usual to state such data in A_unil also.

1A=10"m.
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©
Fig: 5.14 : a) An atom at the body-centre of & unit cell; b) An atom at the face-centre shared by two unit

‘cells; ¢) An atom at the edge-centre shared by four unit cellsy d) An atom in the corner shared by eight
unit cells.

e In a simple cubic cell, there are atoms only at the eight corners; and herice, a simple
] : 1 .
cubic structure has only one net atom (8 X I} = 1) per unit cell.
® O the other hand, in a bcc structure, there are atoms in the eight corners and the

. v 1 . '
centre of the cell; hence, there are two net atoms [(8 X ? ) +1 = 2] per unit cellof a

bcc structure.
® Finally, for a fcc structure, there are atoms in the eight corners and six face centres.

1 . .
. That is, a fcc structure has four net atoms [(8 X 3 )+ (6 X %) =1+ 3 = 4]per
unit cell.

The density of a crystal depends on the number of atoms, their mass and the volume of the
unit cell. Let us now see the calculation of the densities of these three types of unit cells.

5.7.2 Density Calculation

Mass
Itisk that density = ————
t is known that density Volume (5.10)
X-ray measurements give us the cell-edge length. If the cell-edge length is a m, (i.e, a metre)
then the volume of the unit cell = a’" m' ~ 5.1

_The mass of an atom of the substance is obtained by dividing the mass of one mole atoms [i.e.,
atomic mass (w) in kg mol '] by Avogardo constant (Na , which is a equal to
6.022 X 10°* mol ). :
w kg mol ™' w '
_N—Agmol-( = F\_ g - (5.12)
A simple cubic structure has only one atom per unit cell; hence, mass of unit cell of a simple
cubic crystal js given by Eq. 5.12. Substituting the proper values from Eqgs 5.11 and 5.12 in
Eq. 5.10, we get, : A '

Mass of on atom =




 the density w S " Solid State
ofasimple { = - kgm™ - (5.13)
cubiccell | Nad

Since, simple cubic, bcc and fee unit cells have one, two and four atoms per unit cell, the
densities of bcc and fec are given by :

. _— 2w ~ . )
Density of a bcc cell, SN kem ’ o - (5.14)
Density of a fec cell = ——kgm™ 5.1

y Nod g , ..(5.15)

. In general, the density of a cubic unit cell (p) = 1\7 w3 kg m™ . (5.16)
Ad

Wh_ere n is the number of net atoms per unit cell.
Rearranging Eq. 5.16, we get,
pNA (13
n=——-
w

5.7.3 Experimental Method

The cell-edge length (@) and the density (p) of a crystal are experimentally determined. These
values are substituted in Eq. 5.17 and n is calculated. Depending on whether n = 1 or 2 or 4,
the unit cell is simple cubic or bec or fec. Let us work out an example.

(5.17)

Nickel metal packs in a cubic unit cell with a cell-edge length (a) of 3.524 X 10™'° m. The
* density (p) of nickel is 8.90 X 10’ kg m™: Let us find out the unit cell type for nickel. Since
. atomic mass of nickel is 58.7, w = 0.0587 kg mol ™'

First we have to calculate n using Eq. 5.17

) Na 4 N
1 W
890 X 10’ kg m™ X 6,022 X 10” mol™' X (3.524 X 10™° m)’
n 0.0587 kg mol ™!

= 4 (rounded to the nearest whole number).

Since there are four atoms per unit cell, nickel has a fec lattice.

In the following section, we shall study the nature of bonds responsible for holding the solid
together. Before that attempt the following SAQ.

SAQ 5 - L)
Tungsten forms bee crystals. Its cell-edge length is 3.16 X 107" m. Find the density of
tungsten:

5.8 NATURE OF BONDS IN SOLIDS

There are basically two theories or models to explain the nature of bonds in solids. One is
known as bond model and the other as band model. These two names may sound new; -
however, they are the same two approaches that we have already studied (in Units 4 and 5 -
of Atoms and Molecules course) in connection with the formation of a molecule by the
combination of two or more atoms. Thus the bond model is the same as the valence bond
approach. Here we consider a crystal as a three dimensional arrangment of atoms and each
of these atoms has valence electrons which can form normal chemical bonds with

- neighbouring atoms. These bonds may be ionic, covalent or van der Waals in character. In
the other approach, which is called the band model, we follow the molecular orbital

‘treatment. All the nuclei with their core electrons are considered as a fixed periodic.array _ 73




States of Maiter

Urit cell-edge length must connect
equivalent points. If there is an atom
at the corner of a unit-cell, similar
atoms must be present at all the
corners. [f there is an atom at a face-
centre, the opposite face-centre also
must have the similar atom.

over which the valence electrons are spread out. It is like pouring of electron cement over a
fixed arrangement of nuclear bricks. We have already read about ionic bond, covalent
bond, hydrogen bond, etc., in Unit 3 of Atoms and Molecules coutse. We shall now study
meiallic bonding in terms of the above two models.

Metallic Bonding : » ' .

According to the bond theory, the metallic solids can be considered as having simple
covalent bonds between adjacent atoms. However, in these cases, the number of electron
pairs available for bond formation is less than the number of orbitals available. Hence,
when such substances are placed under an applied electric field, the electrons from the filled
orbitals can easily flow into the vacant orbitals, thus making them highly conducting.

In the band theory of metals, a crystalline metallic solid is considered as a single giant
molecule. Linear combination of atomic orbitals on ali the atoms is taken to give molecular
orbitals of the solid just as in the case of simple diatomic molecule. It is also assumed that
there is negligible overlap of inner shell atomic orbitals and the energies of these remain
practically the same as atomic orbitals on isolated atoms. However, the outer orbitals do
combine to give molecular orbitals of bonding and antibonding character. Suppose that a
crystal of sodium contains N atoms, where N is of the order of 107, Neglecting the inner
orbitals, there are N number of 3s orbitals on all the atoms in the crystal which can
combine to give N molecular orbitals or delocalised crystal orbitals. Since each molecular
orbital can hold 2 electrons, the total number of electrons which these orbitals can hold is
2N. The actual number of electrons is however only N, since each atom is contributing only
one 3s electron. Hence, only half of the molecular orbitals will be occupied by the electrons
and half will remain vacant. Further, since there are N molecular orbitals and the total
energy difference between the highest and the lowest orbital is very small, the energy

" separation between the adjacent molecular orbitals would be very small. For all practical

purposes we can consider these molecular orbitals as forming a continuous band of energy
rather than separate energy levels. Thus we have a situation where a band of vacant energy
levels lie very near to a band of occupied energy levels. Therefore, the electrons present in
the occupied lower energy levels can easily move out to vacant band. This is the reason
given for metals being good conductors of electricity. In the next section, we shall study the
structures of ionic, covalent and molecular crystals.

i

5.9 IONIC, COVALENT AND MOLECULAR CRYSTALS

In this section. we shall consider the structures of some crystals, which have either ionic or
covalent bonds; examples are also given for crystals having govalent bonding with van der
Waals attraction or hydrogen bonding.

5.9.1 Ionic Crystals

As examples for ionic crystals, we shall consider caesium chloride and sodium chloride
which have bcc and fcc structures, respectively.

bce Structure

The structure of a bec crystal can be defined in terms of unit cell-edge length and two
unique positions in the cell. Consider a crystal like CsCl which has bec structure and has
two different ions in lattice positions. Suppose the centre of a cube is occupied by Cs" ion;

“then, this is one of the unique positigns of the crystal. It is unique because there is no other

point within the cell which i$ one cell-edge length away and which can be occupied by
another Cs" ion. Now if one of the corners of the cube is occupied by a chloride ion, then
all the eight corners of the cube must be occupied by chloride ions. This is so because each
of the corners is one unit cell-edge length away from its nearest neighbours and if one
corner is occupied by Cl” ion, its immediate neighbours which are unit cell-edge length _
away must also be occupied by chloride ions. We can say that any one corner position is
unique in the sense that once you associate an atom with this position, then all the other
corners automatically get associated with the similar atoms. Thus, once these two positions
are defined, the whole crystal gets defi ned (Fig. 5.15).
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Fig. 5.15 : CsCl structure

Since CsCl crystal has one Cs” ion at the centre and eight Cl.ions at the corners, it has one

N _ 1 . . . o
Cs™ ion and one CI” ion (8 X i 1) belonging to one unit cell as per discussion in

Subsec. 5.7.1. That is, each CsCl unit cell has one formula unit.

Jee Structure ) :

In a fec structure, there are four unique positions; once these positions are defined, the rest
of the crystal gets completely described. These are the ¢entres of three adjacent fages and
one corner. Once one corner. is occupied by an atom, all other corners will have similar
atoms. Further, if one atom occupies the centre of one face, the centre of the opposite face
would also be occupied by stiitar atom. Thus, by describing the atoms which occupy the
centres of adjacent three faces, we know the atoms occupying the centres of all the six faces
.Similarly, all the eight corners are described, once we know the atom occupying one of the
corner positions. Thus, the whole crystal is described. Sodium chloride is one such example.
It can be ¢onsidered to be composed of two interpenetrating fcc lattices, one made up of
sodium ions and the other made up of chioride ions (Fig. 5.16).

A unit cell of sodium chioride can be

considered to be made up of

® one jcc unit cell of sodium ions
and )

® one fcc unit cell of ehloride ions.

Since each such fcc unit cell has four

atoms (or ions), sodium chloride

crystal has four NaCl formula units

per unit cell.

Fig. 5.16 : Structure of sodium chloride.

The sodium ion lattice is shifted ih all the three dimensions by half cell-edge length from the
chloride ion lattice. A unit cell of NaCl contains four formula units.

5.9.2 Covalent Crystals

In covalent crystals, definite covalent bonds join all the atoms in the crystal. The str.ucture
of a covalent crystal is related to the number of valence electrons, the nature of prbltals
involved in bond formation and their orie_ntatipn. One of the most commonly cited 75




examples is that of diamond (Fig. 5.17). Each carbon atom in diamond is tetrahedra}lly
bonded to four neighbouring carbon atoms. This is so since each carbon has four sp’

hybridised orbitals pointing towards the corners of a regular tetrahedron. These orbitals
overlap with the similar set of orbitals on the neighbouring atoms. Crystals thus formed are
hard and unreactive.

Stato wl Matter

: Fig. 5. 18 : Structure of iodine crystal—the
Fig. 5.17 : Structure of diamond. basis is I, molecule.

Let us now see another type of covalent crystals known as molecular crystals.

5.9.3 Molecular Crystals

In molecular crystals, the molecules-are held together due to van der Waals interaction.

These crystals acquire the structure which has the minimum energy maintaining the original
shape of the discrete molecules. Iodine (Fig. 5.18) and carbon dioxide crystals are examples
-of this type. S ‘

There is a class of crystals which have hydrogen bonding between the molecules.. An
example of this type is ice. In ice. each oxygen atom is tetrahedrally surrounded by four
hydrogen atoms, two being linked through covalent bonds in the same molecule and the other
two through hydrogen bonds to different water molecules. In the next section, we shall
illustrate the four main types of crystal structures in metals.

The density of potassium bromide is 2.826 X 10° kg‘mi}. Its cell edge-length iy
6.54 X 10" m. It has a cubsic structure. Fingd.out Whether it
structure. R

.......................................................................
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5.10 COMMONLY ENCOUNTERED METALLIC
STRUCTURES

Most of the metals crystallise in one of the four basic structures—simple cubic, body-
centred cubic (bcc), hexagonal closest packed (#cp) and face-centred cubic (or cubic
In hep and ccp structures, each layer closest packed—ccp). Simple cubic structure is not very common except perhaps for

of atoms is closely packed as the polonium metal which packs in this structure. Alkali metals, Ba, V, Cr, Mo, etc., crystallise
name suggests. " in bcc structure. The number of nearest neighbours (coordination number) is 8 in bec
. rr ment. ' '
The unit cell with ccp arrangement is arrangement ) .
i itcell. =~ . ' . ,
; called fec unit ce Each atom in hcp and ccp arrangements touches three atoms in the plane above, three in the

plane below and six in the same plane. Thus, in both the cases, the coordination number is

76




12. Further, in ccp and hcp structures, 74% of the total space is filled with atoms. The difference Solid State
between the Acp and ccp structures (Figs. 5.19 2 and b) is in the arrangement of the third

layer of atoms with respect to the first layer. Metals like Be, Mg, Co, Zn pack in the hcp

structure, whereas those like Ag, Au, Cu, Ni crystallise in ccp arrangement.

@’gg
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Fig. 5.19 : a) hcp arrangement—the atoms in the third layer are straignt aboye those in the first layer—called
ABAB ..... arrangement; b) ctp arrangement—the atoms in the third layer srranged differentty from those in
the first-called ABCABC ..... arrangement.

5.11 SEMICONDUCTORS

Semiconductors are solids which are insulators under normal conditions but become The addition of impurities to a
conductors when heated or doped with impurities. The electrical conductivity of a semiconductor is called doping.
semiconductor increases with temperature. The semiconductors can be broadly classified :

into two types. Let us consider them one by one.

5.11.1 Intrinsic Semiconductors

Intrinsic semiconductors are pure substances which conduct electricity when heated. In an
intrinsic semiconductor, the energy gap between the highest filled band and the next empty
one is very small. Pire germanium, pure grey tin, etc., are intrinsic semiconductors. At
absolute zero, they are insulators. But increase 1n temperature promotes somte electrons
from filled to next higher band across the gap; so they become conductors. The number of
excited electrons increases as the temperature increases; so their conductivity increases wuth
increase in temperature.

5.11.2 Extrinsic Semiconductors

Semiconductors with impurities are called extrinsic semiconductors. They can further be
classified into n-type and p-type semiconductors.

n-type Semiconductors :

When a semiconductor is doped with an lmpurlty having more valence electrons than those
int the semiconductor, a n-type semiconductor is produced. Such an impurity can donate
electron(s)«o the valence band of the semiconductor, and is called a donor. Phosphorus,
arsenic or antimony (each having five valence electrons) are examples of donor impurities
added to germanium or silicon (each semiconductor having four vaience electrons). The
addition of donor impurity to the semiconductor provides additional energy levels and if

they are rightly related to the bands of the semiconductor, conductivity may result. That is,

if the impurity contains a full energy level just below that of an empty band in the
semiconductor, the electrons from the impurity go to empty band in the semiconductor;
hence, it becomes negatwely charged (n-type). Upto certain temperature, the conductivity of ‘
a n-type semiconductor increases with increase in temperature. '
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p-type Semiconductors )

When the impurity used for doping has less valence electrons than the semiconductor, the
impurity can accept electron(s) from the valence band of the semiconductor. Such an
impurity is called acceptor. The addition of boron, aluminium, gallium or indium (each
having | three valence electrons) to silicon or germanium (each semiconductor having four
valence electronsY iz an example of this type. The essential feature is that the impurity must
contain an empty energy level just above a full band in the semiconductor; the electrons
from the full band in the semiconductor will pass to the empty level of the impurity.
Passage of electrons from the semiconductor to impurity makes the former positively
charged (p-type). The effect of temperature on the conductivity of a p-type semiconductor is
similar to that of »-type semiconductor.

The combination of p-type and n-type semiconductor is called p-n jdnction. The p-n
junctions are used as rectifiers, solar cells, light emitting diodes and other electronic devices.

SAQ7
Differentate between intrinsic and extrinsic scmrconductors

............................................................................................

512 SUMMARY

In this unit, we have briefly described those solid substances which can be classified as

crystals. We have also given a hint at the potential usefulness of crystal studies. We

summarise below what we have studied so far : '

® The terms—Ilattice, basis and unit cell—were explained.

® Seven crystal systems and fourteen Bravais lattices were discussed.

® Diffraction method and its utility in crystal structure determination were emphasised;
an experimental technique was then discussed.

®  The nature of bonding in crystals with special reference to metaliic bonding was
discussed briefly.

® Types of semiconductors.were stated and defined.

5.13 TERMINAL QUESTIONS

1) Show that for a simple cubic cell, the ratio of the volume occupied to the volume of the
“unit cell is 0.52.
(Hint : Assume (i) atoms are spherical and (i1) they touch along the cell-edge, i.e.,

radius = % ).
2) In the following cases, mark “y/* for correct statement and <X’ for wrong statement :
i) The Miller indices of a crystal plane which makes intercepts 2a, 3b, 2¢ are (232).
ii) The basis in ice crystal is H.O molecule.
i) A cube has twelve edges.

iv) The unit cell of caesium chloride crystal contains two formula units of CsCl.

3) What are the separaiions of the planes with Miller indices (111), (211) and (100) in a
cubic crystal having cell-edge length of 432 pm?

4) How many net atoms are there in a fec and bec unit cell? Arrive at the conclusion by -
. geometrical arguments.

5) ldenufy the type of auracuve forces (or bonding) mainly responsible for cryst.nl
. bonding in the following cases:

i) diamond ii) potassium bromide

iii) aluminium iv) helium




6)

7

Sodjum crystallises in a bce lattice with a cell-edge length of 4.23 X 107"

‘the density of sodium metal.

The density and cell-edge length of sodium chlonde are 2.163 X 10’ kg m ™’ and
5.63 X 10" m, respectively. Using these data, arrive at the number of formula units
per unit cell of sodium chloride crystal.

m. Calculatz

5.14 ANSWERS

Self Assessment Questions

1
2)

3)
4)

5)

6)

7

A unit cell is the smallest unit chosen which repeats itself in three dimensions.

Simple cubic — lattice points at the eight corners only;
bee — lattice points at the eight corners and the body-centre;
Jec ~— lattice points at the eight corners and the six face-centres.

diy = 2.132 X 107"%m.

Using Eq. 5.9,
sin § = 0.191
= sin ' 0.191

=11°

Using Eq. 5.14, density of tungsten = 1.936 X 10* kg m™

Let us find out the number of formula units of KBr present in a unit cell using Eq. 5.17.

w = Molar mass of KBr = 0.119 kg mol ~".
PR |
W

2.826 X 10" kgm "X (6.54 X 107'°m)* X 6.022 X 10”mol ™’

~ 0119kg mol™

=4
Since it has four formula units per unit cell, it has NaCl structure and not CsCl
structure.

The conductivity of an intrinsic semiconductor is due to the existence of a vacant
conduction band separated by a small energy gap from the filled valence band. An
extrinsic semiconductor owes its electrical conductivity largely to the presence of an
impurity wnth appropriate energy levels.

Terminal Questions

1)

2)
3)
4)

Since the spheres touch along the edge, the cell-edge length (a) is twice the radius of a

sphere (r), i.e., r = —‘zi

: 4w  wd’
The volume of a sphere = — 3 =% )
A simple cubic lattice has one net sphere only per unit cell (Subsec. 5.7.1). Hence,
R :
Ta

volume occupied in a unit cell = ra

But the volume of the unit cell = a
_Volume occupied

Fractlon of the volume filled = _______p___
unit cell volume

7ra3

Texae 2

@ x - @yv GV v X
2.49 X 107" m; 1.76 X 10""°m and 4.32 X 107" m.

A fcc uiiit cell has four net atoms while a bec unit cell has two net atoms (see subsec.
5.7.1). :

Solid State
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St Hhatter 5) i) Covalent bonding

i) Electrostatic forces (ionic bonding)
1) Metallic bonding
iv) van der waals interaction.

6) LO1 < 10%kgm .

7) Substituting the density (p), cell-edge length (a) and molar mass (w) of sodium chloride
in Eq. 5.17, we get,
2163 X 10° kg m ™ X (5.63 X 10" m)’ X 6.022 X 10*’ mo! !
0.05845 kg mol™' '
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