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1.1 INTRODUCTION 

Problem-solving is an essential aspect of scientific study in geneial and of physical chemistry 
in particular. If is possible that some of us are 'afraid' of equations containing physical 
quantities. This fear is mainly due to the mathematical clothing of such equation. To dispel 
this fear, first of all, we have to understand how to represent one single physical quantity in 
terms of its magnitude and units. This will help us to handle with comfort and confidence, an 
equation containing many physical quantities. Here we shall study the principles of 
representing the units of the physical quantities. 

Till recently in the scientific world, mainly two systems of units had been in common use. 
One is c.g.s. (centimetre, gram, second) which was more commonly &ed over the European 
Continent and the other is f.p.s. (foot, pound and second) prevalent in England. A common 
system of units helps in exchanging the scientific facts and ideas originating from different 
countries. It is better still if the system of units could be derived from the scientific formulae 
or fundamental constants. This long felt need for a common system of scientific units was 
realised at a meeting called General Conference on Weights and Measures in 1960. At this 
meeting, the international scientific community agreed to adopt common units of 
measurements known as ~nternation~dystem of Units. This is abbreviated as SI units from 
the French name, Sysreme Inlernglianale. 

;I' 

In this unit, we shall first state the SI units for a few basic and derived quantities. Then we 
shall explain the prefixes used to change the order of magnitude of the SI units. Also we 
shall state the rules for representing the SI units and the procedure for converting non-SI . 
units into S1 units. 

Objectives 
After studying this unit, you should be able to : 
@ explain the need for SI units, 
@ state basic and derived SI units, 

derive the dimensions and the SI unit of a physical quantity using an appropriate 
equation, 
explain how the multiples and the submultiples of SI units can be obtained, 
describe the rules for writing SI units, and 
convert non-SI units into SI units. 

1.2 BASIC UNITS 

There are seven basic physical quantities, from which ali other physical quantities can be 
derived. The uiiits of these basic physical quantities are called basic units. The names of 
these u'antities along with their symbok, SI units and the symbols of SI units are given in 
Table: 8 .1. Each of these seven qudntities is regarded as having its own dimension. The 
dimepions of basic quantities are &ful in defining the derived physical quantities, which 
we shall study in Sec. 1.3.W will be using the symbols given in column (ii) of Table 1 .I to 
refer-to the dimensions of the basic quantities. 



TaMe 1.1 : Basic Wyslfal Quantities and Their SI Units 

Physical Quantity Symbol of the quantity - Name of the SI Unit Symbol of the SI Unit 
(i) (ii) , (iii) (iv) 

Length I metre m 

Mass m kllogram kg 

I Note that m (italicised) is the symbol S 

I for mass of an object, while m Electric current I ampere A 
I (roman) is the symbol of SI unit. 

Temperature T kelvin K 

Luminous intensity I, candela cd 

Amount of substance n mole mol 

We are not going to define kilogram, metre etc., since our aim is to use these units and not 
to establish the basis of these units. 

1.3 DERIVED UNITS 

All other physical quantities are regarded as being derived from the above seven basic 
quantities by definitions involving multiplication, division, differentiation and integration. 
Such quantities and their units are called derived physical quantities and derivkd units, 
respectively. 

In Tables 1.2 and 1.3, the derived S I  units without and with special names are given. You 
will find it useful, throughout your study of chemistry, to refer to these tables whenever 
some physical quantities are to be expressed. The units of some magnetic and electrical 
quantities were discussed in Unit 6 of Atoms and Molecules course. Since electrochemistry 
will be studied in Block 4 of this course, a few useful electrical quantities are also included 
in Table 1.3. 

TaMe 1.2 : Derived SI Units Without Special Names 

Physical Quantity Defhitii . . Dmemmd f o m h  Named he SI Unit Symbol of the SI Unit 
(0 (ii) (i8) (iv) ( 4  

Area* Length X length r' square metre m2 

Volume* Length X length 
X length P cubic p t r e  m3 

Mass/Volume kilogram per cub~c metrg 

Velocity Displacement/Time If-' metre per second m s l  

Accelerat~on (Change In li: metre per second squared m 5.' 
velwity)/Time 

Molar mass MadAmount of the mn-I kilogram per mole kg mol 
substance 

The detin~t~ons glven for area and volume are of general type, although specific formulae are to be used 
depending on the geometry of a surface or an object 

Table 1.3 : Derived SI Units Having Specid Names h 

Physical Quantity Delinitiw Dimensiond Name of the Symbol d the " 
form& SI Unit SI Unit 

(i) (11) (iv) ( 4  

Force Mass X acceleration 

Pressure 
or kg m s ' 

Energy or Work Force X distance mlr-'1 joule _ ~ o r ~ m o r ~ a m '  
= or kg m-s ' 

Electric charge Electnc current X tlme 11 coulomb CorAq 

Electrical mergy ml4-' 
Electric potentla1 difference - volt V o r J C 1  

Eleunc cbsrge If 
= ,--I,-' 

or kg m"-'s" 



Unitsand Dimenwon 
Physical Quantity Definition Dimensional Name or the Symbol or the 

lonnule SI Unit SI Unit 

(i) (ii) (iii) (iv) (v) 

(Electric potential difference) m12 1.' I-' 
Electric resistance ohm f 1 o r V ~ '  ' 

Electric current 1 or kg mLA-'s" 

= m / ' r 7  t J  

Electric conductance 

Frequency 

1 1 
r2 ,-2 siemens S or A V- '  (Electric resistance) or A' s' kg-' m" 

= ,1,3,,,-' /-2 

(Number of waves or cycles) 1 - hertz Hz ur <' 
time t 

From Tables 1.1, 1.2 and 1.3, you can find a direct correspondence between the dimensions 
.of a physical quantity and the symbol of its SI unit. For examble, see how from the 
dimensions of acceleration, its SI unit .has been worked out below : 
Dimensions of acceleration = liz [column (iii) of Table 1.21 

Units of acceleration = rn s-2 [columns (ii) and (iv) of Table 1 . I ]  

Let us see how the dimensions and the units of a physical quantity can be obtained using 
rables 1.1 - 1.3. 

Deduction of the S1 Unit of a Physical Quantity 
We can derive the dimensions and the units of a physical quantity, provided a mathematical 
relationship is available between this physical quantity and other physical quantities of 
known dimensions. Suppose we want to find the dimensions and the units of the gas 
constant, R .  The mathematical relationship to be used for this is the ideal gas equation 
(Fq. 1.1), which we will study in Unit 2. 

Pressure X volume = Amount of the substance X gas constant X temperature ... (1.1) 
Rearranging this, 

Pressure X volume = 
Amount of the substance X temperature 

The dimensions of the quantities in the right hand 5ide of Eq. 1.2 are mentioned in Tables 
1.1-1.3. We use the dimensions of these quantities-to derive the dimensions and the units of 
R as shown below : 

Pressure X volume 
Dimensions of R = Dimensions of [ Amount of the substance X temperature 

Hence, the units of R = joule mole-' kelvin-' 
(using the units corresponding to the dimensions mentioned in Tables 1.1-1.3). 

Thus, R has the dimensions of (energy) (amount of the substance)-' (temperature)-' and the 
units. J mol-' K - I  

In general, the following hints would useful in.the deduction of the unit of a quantity 
(which we name as test quantity) : 

i) Write an equatlon relating the test quantity to other quantities of known dimensions. 

ii) Rearrange this equation such that only the test quantity is on the left hand side and 
others are on the right hand side. 

iii) Substitute the dimensions of the quantities on the right hand side and simplify. 

iv) Write down the units corresponding to the simplified dimensions, using Tables 1.1-1.3. 

Use the above hints and work out the following S lQ< 

SAQ 1 
Derive the dimensions and the units of root mean square s p e d  (u,,,) of a gas using the 
following equation : 



3 X gas constant X temperature 
Molar mass 

The dimensions of molar mass are mn-' 

S A Q  2 
From the equation, kinetic energy = 1/2 X mass X (velocity)2, derive the units of kinetic 
energy. 

We now discuss how to overcome the difficulty ofexpressing the units of physical 
quantities, which are either very large or small, as compared to the S1 units. We add a 
prefix to the SI unit such that the magnitude of-the physical quqntity of a substance can be 
expressed as a convenient number. 

Prefixing of SI units heIps in For example, the bond distance in hydrogen molecule is 7.4 X 10-I'm. We express it' 
expressing a physical quantity, large conveniently as 74 pm where pico is the SI prefix and p is its symbol. The list of SI prefixes 
or small, as a convenient number. is given in Table 1.4 and it is possible to change the order of magnitude of any unit using 
Example : 7 . 4  X 10.' ' m this Table. 

= 74 X 1 0 . ' ~  m 
= 74 om Table 1.4 : SI Prefixes 

Submultiple Pretix Symbol Multiple Prefix Synibol 

10 ' deci d 10 deca da 

10 centi c 10' hecto h 

10 ' milli m 10' kilo. k 

10 " micro fl 10" mega M 

10 nano n 1 oq &!&a G 

10 ': pic0 P 10l2 tera T 

10 " femto f 10"  Pets P 

10 " atto a 10" exa E 

More examples for usage of prefixes are given below : 
10'm = 1 km; 10-'s r 1 ns 

The unit for mass is kg which is already prefixed. We do not add a second prefix but rather 
use a single prefix on the unit gram. Thus, to represent 10 ' gram, the symbol used is ng and 
not pkg. For lo-' gram, mg is used and not pkg. 

SAQ 3 
Write down the following with proper SI unit symbols and prefixes : 

(a) I o-' metre (b) lo-'' second (c) 10' pascal 



SAQ 4 Units and Dimensicnw 

Suggest a convenient SI unit to specify the diameters of atoms and molecules which are in  
thi. region of 10 "'m. 

1.5 GRAMMATICAL RULES FOR REPRESENTING 
THE SI UNITS 

The following rules would be of immense help to you while using SI units : 

i) The symbol of a unit is never to be used in plural form. Writing 10 kilogra~n as I0 kg 
is correct but not'as I0 kgs 

~ h r e e  no's in SI units : 
ii) In normal usage, full stop is used to indicate the end of a sentence or the presence of an NO pluiats; 

abbreviation. To denote SI unit as an abbreviation by means of a full stop after the NO full stops (except at the end ot a 

symbol is incorrect; but if the SI unit is at the end of a sentence, then the full stop can sentence); 

be used. No dashes. 

iii) When there is a combination of units, there should be a space between the symbols. If . 
the units are written without leaving any space, the first letter is taken as a prefix. Thus, 
m s represents metre second whereas ms stands for millisecond. 

iv) Always leave ,I space between the magnitude and the unit symbol of a physical 
quantity. For example, writing 0.51 kg is correct but not 0.51 kg. 

v) Symbol of the unit derived from a proper name is represented using capital letters but 
not the name of the unit (Table 1.3). F Q ~  example, writing 100 newton or 100 N is 
correct but not 100 Newton or 100 n. 

vi) For numbers less than unity, zero must be inserted to the left of the decimal point. 
Thus, writing 0.23 kg is correct but not .23 kg. 

vii) For larger numbers exceeding five figures, one space after every three digits (counting 
from the right end) must be left blank. Commas should not be used to space digits in 
numbers. For example 15 743 231 N is correct but not 15,743,23 1 N. It is preferable 
to use proper SI prefixes. 

viii) The degree sign is to be omitted before K while representing temperature. For example. 
298 K is correct but not 29g°K. 

ix)  You should not mix words and symbols for representing SI units. For example, it is In cm unit, c (centi, is the 

proper to write N m-2 or newton per square metre and not N per square metre. prefix of the unit, m (metre). 

x) Exponents (or powers) operate on prefixes also. Let us derive the relationship between 
cm3 and m3 using the relation, 1 cm = 10-' m. 
1 cm3 = (1 cm13 = (10.' m) X (10.' m) X m) = m3 
Thus, 1 cm3 is equal to m3 but not to lo-' m3 or lo-' m3. 

xi) To show that a particular unit symbol has a negative exponent, one may be tempted to 
use the sign "/", known as solidus. It is: better to avoid the usage of this sign and if 
used, no more than one should be empbyed. Fdr example, teprese~ting pascal (kg m-' 
s-') as kg/m s2 is allowed but not as kg/m/s2. 

So far, we studied some rules for writing SI units. Let us now discuss the dimensions of 
some mathematical functions which are useful ih studying this course. 

While representing the relationship among the physical quantities of substances, we often 
come across the mathematical functions like sin 8, ex and In x. It is to be kept in mind that 
trigonometric (sin 8, cos 8, etc.), exponential ( e h r  e - 9  and logarithqic functions (In x or 
log x )  are dimensionless quantities and hence have no units. 

You can understand the validity of this statement, once you recapitulate the definitions of 
these functions. We shall illustrate this for the functions, sin 0 and e: 

From the right-angled triangle PQO, 



States of Matter length of PQ 
sin 0 = 

length of OP 
Evidently sin 8 is dimensionless and has no unit. The same is true of other trigonometric 
functions also. 

P 

/1 As an illustration for the exponential series, let us expand ex. ' 

Since addition or subtraction must be done between quantities of same dimensions, 1, x, .(', 
..... x'. etc., in the above series must all be of the same dimensions. This indicates that x and 

e' are dimensionless and unitless. Again this is true of e "and In x or log x also. 
Q 

SAQ 5 
In Unit 5 of this block, you will study that Bragg equation, 

is useful in the diffraction studies' of X-rays by crystals. Given that n is dimensionless and A 
has the dimension of length, find the dimension and unit of d. 

1.6 CONVERSION OF NON-SI, UNITS TO'S1 UNITS 

Often in textbooks we see that the quantities are expressed in non-SI units such as c.g.s. and f.p.s. 
In such a silGation, we must know now to convert non-SI units into SI units. There is a 
simple procedure available for this purpose. It is called unit-factor method. This method 
can be explained using the following example. 

An important practical unit of pressure is atmosphere (atm). To be exact, at 298.2 K a 
column of mercury, 76 cm high (h = 76 cm), exe5ts a pressure of 1 atm. (Fig. 1.1). 

Fig. 1 .I : The precsure of a mbna d mercury 76 cm high inside the 
glass tube (black arrow) balancec the precsure of air (red arrow) on 

the rect of the surfaces of mercury 

The SI equivalent of 1 atm pressure can be obtained by substituting the values of h, g 
(acceleration due to gravity) and pidensity of mercury) in SI units in the formula : 

... P ' hgp (1.3) 
1 

The values of g and p in c.g.s. units are 980.66 cm s" and 13.595 g ~ m - ~ ,  respectively. We 
have to convert the values of h, g and p into SI units, before substituting them in Eq. 1.3. 
To accomplish this, we must know how to construct a unit factor. . 



Construction of a Unit Factor 
A unit factor is a ratio that is equal to 1. It states the relationship between the SI and the 
non-SI units of a physical quantity, it is constructed from ihe equivalence statement relating 
both these units. For example, for the conversion of the unit of h from c.g.s. into SI units, 
the equivalence statement is, 

From this equivalence statement, the unit factor for conversion cal? be constructed by 
dividing both sides by 100 cm (i.e. equivalent value in non-SI unit). 

In general, the unit factor for conversion of a physical quantity into SI unit is given by the 
relationship : 

, SI unit of a physical quantity 
I Llnit factor = ~quivaleht amount of the physical quantity in non-SI unit 

Let us now see how the upit factor is useful in unit conversion. 

Conversion into SI Unit 
The unit factor is to be multiplied by the actual value of the physical quantity in non-SI 
unit to get the quantity in SI units. For example, the value of h (actual value = 76 cm) is to 
be multiplied by the unit factor, 1 m/100&m to get it in metre unit. 

1 m 
h in SI unit 51 76 cm X = 0.76 m. 

100 cm 

The. conversion of units of h, g and p into SI units is represented in Table 1.5. 

TaMe 1.5 : Conversion of Units o f  h, g and p 

Physical Symbol Equivalence Unit fador The acr~lal value of The quantity in S I  unit(s) 
quantity statemenl(s) the quantity in 

non-SI unit(s) 
(i) (ii) (iii) . liv) (vi) = (v) X (IV) 

I rn 
Hrig!lt ot h 1 0 0 c m - l r n  -- 76 rrn 
nerccrj 100 ~ r n  

I m s-' I m s-- 
Acceleration g 100 cm s-' = -- 589.66 cm s-' 980.66 cm s ' X - 
SIIC to sravity I m s :  100 cm S-' 100 an  r! 

(1 kg) (1 m')** 10 kgtm3 
Density of p 1 0 ' g = l k g d n d  -- -----. 1 ' 3 5 9 5 g ~ m - ~  1 3 . 5 9 5 g m - 3 ~  -- 
mercury 10, cm = , n,'* ( l o ' g )  (lo1 CRI') (1 g m3) 

10' kg cm' -- - 

I g m '  

* (10: cm)' = 13" cm' z ] ",' 
** Density = Mass/Volurne 

Unit factor for mass conversion 
Unit factor for dens~ty conversion = 

Unit factor for volume convenion 

The values of h, g and p from the last cloumn of Table 1.5 are to be substituted in Eq. 1.3 
to get the SI equivalent of 1 atm pressure. 

i.e.,p = 0.76 m X 9.8066 m s-* X 1.3595 X 10' kg m-3 
= 1.0132 X lo5 kg m-'s-" 1.0132 X lo5 Pa. 

Units and Dimensim 

Hence, SI eq'uivalent of ] atm pressure is 1.0132 X 10' Pa. Using the above illustration, we 
can sum up the steps for the conversion of non-SI units of a physical quantity into SI units 
as follows : 

(i) Obtain the equivalence statement relating the SI and the nowcr units. 

{ii) Construct'the unit factor. 



States of Matter (iii) Multiply the actual amount of the physical quantity (in non-SI unit) by the unit tactor. 

Using the above procedure, attempt the follwing SAQ. 

SAC) 6 
The value of the gas constant R is often expressed as 1.98.7 cal mol-I K". Obtain its value in 
SI units (J mol ' K I). Given that 1 cal = 4.184 J, 

1.7 SUMMARY 

In the study of physical chemistry we come across many physical quantities. Confusion may 
arise in choosing the proper units for a particular quantity. We q n  overcqme this difficulty 
by using SI units consistently. In this unit, we have discussed the basic and the derived units 
of SI system. The steps to be followed in deriving the dimensions and the units of physical 
quantities are explained with examples. The rules for representing.the SI units of quantities, 
have also been stated. The method of converting non-SI units into SI units has been explained 
using aa illustration. I 

1.8 TERMINAL QUESTIONS . 

1. Examine the following statelrlents and indicate their validity by writing T for true or F 
for kalse; if false, indicate the reason. 

i) The SI unit of mass is gram. 
ii) The symbol of SI unit of temperature is k. 
iii) The SI unit of pressure is pascal. 
iv) 1 N = 1 kg m ~ - ~ .  
v) gram = I pg. 

2. If 25.3 g of a substance occupies a volume of 23 cm', calculate its density in SI units. 

3. The molar mass (M,) of an ideal gas is related to its pressure @), density (p) and 
temperature (T), according to the equation, 

M,, = - pRT ..In this expression, R is the gas constant. Find the SI unit of molar mass. 
P 

4. The reduced mass (p) of two objects of masses ml and mz is given by the formula : 

r n ~  rn: , 

= ( m ~  + rnz) 
Whai is the unit of reduced mass? 

5 .  Complete the following conversions : 
a) 1 mg = ..........,. kg = ............ g 
b) I s -  ............ h s =  ............ ns . 

............ ............ C) 1 km = m =  mm 

1.9 ANSWERS 

Self Assessment Questions 
1. Dimensions of u,,,, 

- of \/ gas constant X temperature - 

Molar mass 



= *= /ti1. 
Hence u,,, has the dimensions, lri' and the units, ms-'. 

2. Kinetic energy has the unit, J. ' 

3. (a3 nm (b) ps (c) kPa. 

4. lo-'' m = loz pni; hence pm unit can be used. 

5. Since n and sin 8 are dimensionless, d has the same dimension and unit as A; its 
dimension is I and its, unit is metre (m). 

6. Value of R in S1 unit = The value of R in non-SI unit X unit factor 

Terminal Questions 
1. i), F; (the SI unit of mass is kilogram) 

ii) F; (the symbol of SI unit of temperature is K) 
iii) 'T  
iv) F; 1 N = 1 kg m s-2 (a blank'space needed between m and s-') 
v) T. 

2. in SI unit = 25.3 g X - kg - - 2.53 X lo-' kg 
lo3 

1 m3 
Volume in SI unit = 23 cm3 X - - - 2.3 X lo-' m3 

lo6 cm3 

Density = ------ - Volume 2.3 x 10-5m3 

Dimensions of p, p, R and Tare  ml-3, ml-1r-2, m 1 2 t - 2 n - 1 ~ '  and T, respectively. 

PRT Dimensions of M, = Dimensions of - 
(d3) (ml2 i2 n-' T') T P 

- - 
m r l  fZ  

- 1  = m n  . 
Hence, the dimensions and the symbol of the SI units of molar mass are mn-' and 
kg mol-', respectively. 

4. The unit of reduced mass is kg. 

5. a) 1 m g =  1 0 - ~ k g =  1 0 - ~ g  
b) 1 s = 103ms = 10"s 
c) 1 km = lo3 m = lo6 mm. 
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2.1 INTRODUCTION 

Matter exists in solid, liquid or gaseous state depeoding on temperature and pressure. A 
familiar example is the compound H20, which can exist as ice; watei or steam. The study of 
the gaseous state is the easiest as gas laws take a simple form at low pressure and high 
temperature. However, these laws are not valid at all temperatures and ptessures. Also.the 
range of validity depends on the nature of the substance. itself. In a gas, the molecules on the 
average are separated by large intermolecular distances and at such distances, interactions 
between these mol~ules are very weak. This is not so in solids and liquids. Hence, the 
molecules in a gas have greater freedom of motion. As a reult of this, they move about 
randomly and tend to occupy the paximum space available to them. Hence, gases have no 
particular shape or volume. Another consequence of their random motion is that each gas 
molecule collides with other molecules and also with the walls of the container. The 
constant bombardment against the walls of the container manifests itself as the pressure 
exerted by the gas. 

This unit provides a molecular interpretation for the properties of gases. We shall start with 
a recapitulation of the gas laws. Then we shall explain the use of ideal gas equation in 
calculating the pressure, volume, temperature and amount of a gas. The postulates of the 
kinetic theory'of gases will be explained and used in deriving an equation which is useful in 
calculatirfg the parameters such as pressure. average kinetic energy etc. of the gas molecules. 
The principle of eqbipartition of energy will be described. 

The distribution of molecular speeds and the dependence of molecular speeds on 
temperature will abo be discussed. Finally the equations for calculating the collision 
number and the mean free path will be derived.' 

In this unit, the behaviwr of ideal gases shall be discussed. In the next unit, the deviation 
from ideal bebaviour and the behaviour of real gases shall be taken up for discussion. Many 
of the expressions derived in this unit would be useful in studying the units on chemical 
,equilibrium, solutions and chemical kinetics. 



Objectives 
After studying this unit, you shall be able to : 

state the gas laws and derive the ideal gas equation, 
calculate one of the unknowns amongst pressure, volume, temperature or amount of a 
gas using the ideal gas equation, 
state Dalton's law of partial pressures and Graham's law of effuion, 

I 
derive the equation p V = - rnA1u2, 

3 
explain the distribution of molecular speeds, 
calculate the most probable speed, the'average speed and the root mean square speed, 
state and explain the principle of equipartition of energy, 
derive an expression to calculate the collision number between gas molecules, and 
calculate the mean free path of molecules. 

2.2 RECAPITULATION OF THE GAS LAWS 

Kinetie Theory of Ganm 

Some of the earliest measurements on pressure, volume and temperature (la- V-T) were 
made on air at atmospheric pressure and robm temperature. Fortunately, under these 
conditions air nearly behaves as ideal gas. This he!ped a lot in the formulation of the gas 
laws. You would have studied Boyle's law, Charles' law and Avogadro's law in your 
previous classes. We shall recapitulate these gas laws after stating the units of pressure, 
volume and temperature. 

Pressure : The SI unit of pressure is pascal (Pa). Its equivalence with other units of pressure 
are as follows : 
I stan&rd;itmosphere = 1 atm = 760 mm Hg = 760 torr 

= 1.0132 X lo5 Pa = 1.0132 bar. 

Vdume : The SI unit of volume is cubic metre (m3)..0ther equivalent units are given 
below : 

Im3 = lo3 dm3 = lo3 L = lo6 cm3 

In the above expression 'i' stands for litre. 

Temperature : The SI unit of temperature is kelvin (K). To convert temperature from 
celsius scale into kelvin scale, 273.15 is to be added to the former. 

Let us now state thn, gas laws. 

2.2.1 Boyle's Law 
It states that at constant temperature, the volume, V, of a fixed mass of gas varies inversely 
as its pressure, p. 

Here KI is a constant at a given temperature for a fixed amount of the gas. This type of A gas that obeys Boyle's law is 
behaviour of a gas is shown in Fig. 2.1 at two different temperatures. Such a plot at called an ideal gas. 

cmtant  temperature is called an isotherm and it resembles a hyperbola. 
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States of Matter 2.2.2 Charles' Law 
It states that for a certain amount of gas at a constant pressure, its volume (V) is directly 
proportional to its absolute temperature (T). 

i.e., Vcc T ... (2.3) 

or V = K2T ... (2.4) 

where Kz is a constant for a given pressure and amount of gas. This law is also known as 
Gay-Lussac's law. Fig. 2.2 depicts the variation of volume with temperature at constant 
pressure. Such a plot is a straight line and is known as an isobar. 

T I  K 
Fig. 2.2 : lsobars at p ,  and p, 

2.2.3 Avogadro's Law 
It states that equal volumes of all the gases contain equal number o f  molecules under the 
same conditions of temperature and pressure. In other words, 

Avogadro number is equal to where N is the number of molecules in a volume V. But the number of moles (n) is related 
6.022 X loz3 and has no units. to the number of molecules (N) as per the equation, 
Avogadro constant is equal to 
6.022 X mol-I ' N n=- ... (2.6) 

NA 
where NA is Avogadro constant (6.022 X loz3 mol-I). Using Eqs. 2.5 and 2.6, we can sate 
that at constant temperature and pressure, 

V a n  ... (2.7) 

That is, at constant temperature and pressure, the volume of a gas is proportional to the 
number of moles of the gas. In other words, equal amount of two gases would occupy same 
volume at the same temperature and pressure 

Usinglhe above gas laws, we can arrive at the ideal gas equation. 

'2.3 EBUATION OF STATE FOR IDEAL GASES 

By combining Eqs. 2.1,2.3 and 2.7, we obtain the combined gas law i.e., 
n T  

V a  - 
P 

o r p V = n R T  . 

where R is the gas constant. 

Eq. 2.9 is known as the equation of state for an ideal gas. The state of the gas is its 
condition at a given time. A particular state of a gas is described by its pressure, volume, 
temperature and the amount. Knowledge of anythree of its properties is enough to define 
completely the state of the gas, since the fourth property can then be determined using 
Eq. 2.9. 



Let us now discuss the units of R. 

Units of R 

Kinetic Theory of Gases 

In See. 1.3 of Unit 1, you have studied that R has the dimensions of (energy) (amount of 
substance)-' (temperature)-'. In SI units, the value of R is 8.314 J mol-' K-' and-we will 
be using this value throughout this course. 

The values of R in different units are given k low : 
R = 8.314 Jmol-' K - I  

= 8.314 X 10' erg mol-I K-' 
= 1.987 cal mol-I K-' 
= 0.08206 L atm mol-' K-' 

Calculatkms Using Ideal Gas Equation 
Eq. 2.9 is useful m calculating any of the unknowns amongst pressure, volume, temperature 
or the amcunt of gases from three of the other known quantities. Let us illustrate this by 
calculating the volume occupied by 0.0660 kg of carbon dioxide gas at a temperature of 
300.2 K and a pressure of 9.41 X lo4 Pa assuming ideal behaviour. 

Mass of carbon dioxide 
Number of moles of carbon dioxide (n )  = 

Molar mass of carbon dioxide 

Substituting the values of different quantities in ideal gas equation, we get 

Using the idas  developed above, attempt the following SAQ. - 

SAQ 2 
How manv nolecuit~s of oxygen are present in 0.3032 kg of the g s ?  

-- - 

2.4 DALTON'S LAW OF PARTIAL PRESSURES 

Dalton's law of partial pressures states that at qonstant temperature, the total pressure 
exerted by a mixture of gases behaving ideally, is the sum of the pressures exerted by the 
individual gases occupying the same volume alone. The individual pressure of a gas in a 
mixture of gases is called its partial pressure. The essential condition is that the gases should 
not react chemically. 
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This law will be useful in studying 
the liquid-vapour equilibria 
liscussed in the unit on solutions. 

Mathematical form of Dalton's Law 
Let us consider three ideal gases, A, B and C. Let the pressure of each gas be P ,, P,, and P(. 
respectively when each of them is kept separately at a temperature T and volume V. Let us 
force these gases into a vessel of volume Vat the same temperature. According to Dalton's 
law of partial pressures, the total pressure @,) is given by, 

Using Eq. 2.9 for each of the gases, we can write 

nc RT 
and p, = 7 
Using Eqs. 2.10 to 2.13, we Can write, 

RT nlRT 
p, = (nA + n~ + nc) =- 

v 
where nt = total number of moles in the mixture of gases = n~ + n~ + nc 
Dividing Eqs. 2.1 1 to 2.13 by Eq. 2.14 and rearranging we get, 

nc 
and pc = - p ... (2.17) 

n, ' 
n~ n~ nc 

The terms - , - and - are called the mole fractions of gases A, B and C, respectively 
nt nt nl 

and are represented as X A ,  X B  and xc. 

Thus the Eqs. 2.15 to 2.17 can be rewritten as, 

... PA = X A  Pt (2.18) 

... PB = X B  P, (2.19) 

... PA = XC Pt (2.20) 

In other words, the partial pressure of a gas in a gaseous mixture is given by the 
product of its mole fraction and total pressure. 

Using the above principles, attempt the following SAQs. 

SAQ 3 
2.00 no1 of nitrogen 1.00 mol of oxygen and 2.00 mol of methane are kept in a vessel of 
volume 0.0600 m3 at 250.2 K. Calculate the total pressure of the mixture of gases and the 
partia! pressiure of the individual gases using Dalton's law ot partial pressuxs. 

SAQ 4 
State the name of the gas pFesent in air which has the highest partial pressure. 



2.5 GRAHAM'S LAW OF EFFUSION 
Kinetic Theory of Gases 

Effusion is the passage of a gas through a smail opening into an evacuated chamber. 
Graham's iaw s:ates that the rates at which gases effuse are inversely proportionai to the 
square root of their densities or molar masses under similar conditions of temperature and 
pressure. 

If r, p and Mm are the rate of effusion, density and molar mass of a gas, then 
1 

then r a - 
& 

or 

If two gases with molar masses M ~ I  and Mm2 have densities pl and p2, then their rates of 
effusion r~ and r2, under same conditions of temperature and pressure, are related as, 

Using Eq. 2.23, answer the following SAQ. 

SAQ 5 
What is the ratio of effusion rate of hyd- to oxygen? 

2.6 KINETIC THEORY OF GASES 

The gas laws discussed so far were arrived at on the basis of experimental work. The kinetic 
theory of gases put forward by Maxwell (1860) and Bolmann (1867) provides a theoretical 
explanation for the properties of gases. Let us first go through the following basic assumptions 
of the kinetic theory of gases. 

1) A gas is composed of a very large number of tiny molecules. The gas molecules are far 
apart from one another in comparison with their own dimensions. The gas molecules are 
considered as small hard spheres. Their volume is negligible compared to the total volume 
occupied by the gas. 

2) The gas molecules are in a state of constant random motion, i.e., they move in all possible 
directions with different speeds. 

3) During their motion they collide frequently with each other and with the walls of the 
container. These collisions are perfectly elastic, which means that the kinetic energy of the 
molecules before and afier collision is the same. 

4) There are no intermolecular forces between the molecules; i.e., there are no forces of 
attraction or repulsion between them. 

5) The pressure exerted by the gas is due to the force exerted on the walls of the container 
due to non-stop bombardment of the molecules. 

6) The absolute temperature of a gas is proportional to the mean kinetic energy of the 
molecules present in it. 

We shall use these assumptions in the next section. Let us now discuss some of the features 
regarding molecular velocities which will be required for deriving the equation of state for the 
g-a 

2.6.1 Resolution of Molecular Velocities 

Velocity (u) is a vector quantity. The components of u in the x, y and z directions are u ,  u, and 
u,. The speed u is the magnitude of the vector u and the latter is represented by OC (Fig. 2.3). 

Some authors mention this law as 
the law of diffusion which is not 
quite exact, since diffusion is the 
transfer of material under a 
concentration difference. 
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X Fig. 2.3 : Components of velocity, u 

The lengths OA, OD and OE represent the velocity components u,, u,, and u,. Hence, note 
that OC = u 

BC is perpendicylar to xy plane (shaded). Since OB is in xy plane, BC is perpendicular to 

OB. Hence, m C  -- 90° 

From the right angled triangle OBC, uz = O c Z  = O B ~  + B C ~  = O B ~  u;. 

You can see from the diagram that OD is on y axis. Since DB is parallel to x axis, DB is 

perpendicular to OD, i.e., / L B  = 90" 

In the right angled triangle ODB, OB' = O D ~  DB? = u: + u: 

It is important to note that u is a vector. The speed u and the velocity components u,, u, 
and u, are scalars. A velocity component like u, can be positive, negative or zero 
(corresponding to motion in the positive x direction, motion in the negative x direction or 
no motion in the x direction), but u must be by definition positive or zero. 

2.6.2 Mean Square Speed 
All the molecules do not move at the same speed. As a result of this, x components of the 
velocities of different molecules are different. This is also true ofy components and z 

z 2 components of the velocities. If u:,, uz,, ujx, . . . . . &, are the square of the x components 

of the velocities for the molecules, 1, 2, 3, . . . . N, then the average of these values, u:, is 
given by; 
- (u:,+u:,+u:,+ . . . . .  + u L )  
Ux = 

N 
... (2.25) 

The bar in u2 represents the average For L: and 2 also, the expressions similar to Eq. 2.25 can be written. Further, similar to - - - - 
of the u2 values. Eq. 2.24, the average of the square of the molecular speeds, uZ, is related to uf , u: and u? as, 

The quantity is called the mean square speed. Since the gas molecules are in random 
- .- - 

motion, no particular direction is preferred. The quantities, u:, u: and ut are equal. Hence, - - - - 
U: = U: = uZ/ = uL/3 ... (2.27) 



The above equations will be helpful to you in understanding the derivation described in the K& ~heory of Gpsea 

next section. 

2.7 DENYATION OF THE EXPRESSION FOR 
PRESSURE 

Let us consider a cubical container with side 'I' filled with N gas molecules, each with mass 
'm'. Let us assume that one of the molecules moves in the x direction with velocity component 
ul, (Fig. 2.4). It will strike the wall at the yz plane (shaded face) with momentum mu,, and 
will suffer .in elastic collision so that it bounces back with a momentum - mu,,. 

Fig. 2.4 : Motion of a gas molecule. 
X 

The change ig momentum of the moleculetin one collision is,  mu^, - (- mul,) = 2 mul,. We consider the momentum change 
n i s  molecule has to travel a distance of 21 before it collides with the shaded face again. The along a axts 

time required for the next collision can be calculated as follows : 

The molecule travels a distance of ul, in one second. Hence, to travel a distance of 21, the time 
21 

required = - second. That is, the time interval required for each successive collision with 
U l x  I 

the shaded face is 21/ul., second. Hence the number of col!isions between the molecule and the 
shaded face taking place in unit time will be the inverse of the above expression, i.e., u1,/21. 

The change of momentum in Change of momentum per number of collisions a 
one second (or rate of change = nlolecule per collision molecule undergoes in one 
of momentum) per molecule second 

Ulx  
= 2mulx X 21 

As per Newton's second law of motion, 
force = Rate of change of momentum 

2 mulx 
He~lce force due to collisions by one molecule = - ... (2.28) 

1 

Similarly we can derive expressions for the force exerted by second, third . . . . . N ' ~  
molecule over the shaded face. 

The total force (F )  exerted by N molecu!es over the shaded face can be calculated as 
follows: 
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R is the gas constant for one 
m.ole and k IS the gas constant 
for one molecule. 

m - 
= - NU: (using Eq. 2.25) 

1 
Using Eq. 2.27, 

mNu2 F = -  
31 

But pressure @) is force per unit area (A). The area of the shaded face is f 
F F m~u2 rnN2 : .p= A =7 =- =- 

31. l2  31) 
Since for a cube, volume (V) = i3, 

r n N i 2  
P = F  ... (2.30) 

We shall use this equation in the next section for calculating the average kinetic energy, 
number density, concentration etc. of the gas molecules. 

2.8 IDEAL GAS EQUATION 

Alihough all the gas laws could be derived from Eq. 2.3 1, we shall derive the ideal gas 
equation only and then proceed to calculate different molecular parameters. 
Eq. 2.31 can be rewritten as, 

From the kinetic theory of gases (postulate 6) it is known that the absolute temperature of a 
gas sample is directly proportional to the mean kinetic energy of the molecules, i.e., 

1 -9 - or-mu- - K I T  
2 

where K I  is a constant. 

Substituting this in Eq. 2.32, we obtain, 
2 

pV=-NKlT 
3 

This can be written as 

pV = NkT 

Where k, known as Boltzmann constant is equal to 2/3 KI ,  The value of k is 
1.38 X ,I o-~' J K-I. Eq. 2.35 is the ideal gas equation for Nmolecules. For a gas having 
n moles, tne number of' molecules N is given by, 

where NA is Avogadro constant and it is equal to the number of molecules (or species) in 
one mole of a substance. It is equal to 6.022 X 1013 mol-I. Hence the equation for n moles 
of the gas can be written by ,qsing Eqs. 2.35 and 2.36. 

where R is equal to NAk. Eq. 2.17 is the same as Eq. 2.9 which has been derived in 
Sec. 2.3. 

Let us now calculate some parameters of the gas molecules by the combined use of 
Eqs. 2.31, 2.33, 2.35 and 2.37. 

2.8.1 Calculation of Average Kinetic Energy 
Average kinetic energy per molecule can be calculated from Eq. 2.33, knowing that 

2 



- * 1 - 
Average kinetic energy per molecule = - m u2 = - 

2 
kT 

2 

Similarly, average kinetic energy per mole = (NA) (3 mu2 ) 

3 
= - RT (': R = N A ~ )  

2 
... (2.39) 

The energy calculated using this expression is also called the translational energy; this 
energy is due to the motion of the molecules in space. 

Let us illustrate the use of Eqs. 2.38 and 2.39 in calculattng the average translational kinetic 
energy values of nitrogen molecules at 300 K. 

3 

Using Eq. 2.38, the translational energy of n:trogen per molecele at 300 K = 1- kT 
2 

3 = - X 1.38 X J K - I  >< 300 K 
2 

= 6.21 X J. 
3 The kinetic energy of a gas is due to 

Similarly using Eq. 2.39, the translational energy of nitrogen oer male at 300 K = - RY random motion of the gas molecules. 

3 
2 This is also called thermal energy. 

- -- X 8.3 14 J mol-' K-I X 300 K Temperature is a measure of kineiic 
2 (or thermal) energy. 

= 3.74 X lo3 J mol-'. 

2.8.2 Calculation of Number Density and Concentration 
Number density (no) is defined as the number of molecules of a gas in unit volume. It can 
be calculated by rearranging Eq, 2.35. 

N P Number density of a gas (no) = - = -- ... (2.40) 
V kT 

Similarly, concentration (c), defined as the number of moles of a gas in unit volume, can be 
calculated by rearranging Eq. 2.37. 

Concentration of a gas (c) = If- = 
V RT 

... (2.41) 

Let us apply Eqs. 2.40 and 2.41 in calculating the number density and concentration of Eq. 2.41 will be used in the unit on 

nitrogen m~lecules at 298.2 K and 1.013 X lo5 Pa. chemical equilibrium for the 
" 

1.013 X 10' Pa 
calculation of concentrations of 

Number density (no) of nitrogen molecules at 298.2 K = -??- = reactants and products. 
kT 1.18 x J K X 29g.2 K 

1.013 X lo5 Pa 
Concentration (c) of nitrogen at 298.2 K = P- = 

RT 8.314 J mol-' K-I X 298.2 K 
= 40% mol m-3 

Note that the number density or the concentration of a gas is directly proportional to the gas 
pressure and inversely proportional to its temperature. 

2.8.3 Calculation of Mean Square Speed and Root Mean Square Speed 
In Subsec. 2.6.2, we have defined mean square speed (uf) The square root of its value is R is  he gas constant for one mole 

cailed root mean square soeed and-is reoresented as u,,,. For one mole of the gas, and k is the gas constant for one 

combining Eqs. 2.31 and 2,37, we an write mclecule. 

pV=; RT= ----- :' n = 1 and 
Nm = M, = Molar mass 

- 3RT 
i.e., mean square speed (u2) = - 

Mm 

~ o o t  mean square speed (&)= urns = JF 



States of Malter Let us calculate u,,, of methane molecules at 515 K using Eq. 2.43. 

Air has average molar mass of 
0.029 kg mol- . At room temperature 
(300 !.,, urm, of air molecules is 
510ms ' 

Sound waves are caused by the 
oscillations o i  the air molecules. 
Hence, speed of  the sound waves 
cannot be more than the u,,, of . 
the air molecules. The speed of 
sound in air is 340 m s-' (i.e., 
around two thirds of u,,, of air 
molecules~. 

- M m  v 0.01 6 kg mol 

Usirig the above example, answer the following SAQ. 

SAQ 6 
Calculate the root mean square speed of hydrogen molecules at 500 K. (Molar mass of 
hydrogen. = 0.002 kg mol-') 

2.9 DISTRIBUTION OF MOLECULAR SPEEDS 

A fundamental assumption of the kinetic theory of gases is that the molecules of the gas are 
in random and continuous motion. The molecules, however, do not move with constant 
velocity throughout. They travel with changing velocities due to the large nymber of 
collisions. Since velocity is a vector quantity and the molecules are in random motion, the 
average velocity is zero. But the speed of the molecules is not a vector quantity and hence 
the average speed is a finite quantity. Since there aje a.large number of molecules in any 
sample of a gas, there will be different numbers of molecules having different speeds. 

A typical distribution of the speeds of the molecules in nitrogen gas at 273 K is shown in 
Fig. 2.5. Here the relative probability of a particular speed occurring, is plotted against 
speed. The curve is not symmetrical and shows that there are more molecules with higher 
speeds than the ones with the lower speeds. 

Very few molecules have extremely small or extremely high speeds, The distribution is 
characterised by most probable, average and root mean square speeds. These are defined 
below : 

i) The most probable speed, u,,, is that which the largest fraction of molecules possesses. It 
corresponds to the maximum in the distribution curve for speeds (Fig. 2.5). 

Spccd/m s-' 

Fig, 2.5 : Distribution of speeds of nitrqep moleeuks at 273 K. 



ii) The average speed, u, (also called the mean speed) is defined by the equatlon : 
- I . . . . .  u = - ( u l  + U 2 + U 3 +  + u \ )  ... 

N 
(2.44) 

It is the arithmetic average of the speeds of the molecules ! to N. 

iii) The root mean square speed, u,,,, is defined by the equation : 

Kinetic Theory of Gases 

Maxwell and Boltzmann derived an expression for the distribution of molecular speeds. 
Using this expression, it is possible to derive the following relationships between molar mass 
and the three types of speeds : 

Let us calculate the average speed of nitrogen molecules at 298.2 K using Eq. 2.47. 
8R I' 

Average speed (c) of nitrogen molecules at 295.2 K = Jz 
rMm 

A change in temperature affects the molecular speed distribution curve. The distribution curves 
for nitrogen gas at temperatures of 273, 1273 and 2273 K are shown in Fig. 2.6. 

From the above curves, it can be seen that at higher temperatures (i) the most probabie speed 
is higher (ii) the fraction of the moiecules possessing the most probable speed decreases and 
(iii) the distribution of the molecular speeds changes such that the spread is broader, compared 
to the distribution at lower temperatures. Using the principles discussed above, answer the 
following SAQ. 

SAQ 7 
Calculate ihe ratio u,,, : I: u,,, for a gas of molar m a s  Mm. Dues the value of this ratio depend 
on temperature'! 

2.10 PRINCIPLE OF EQUIPARTITION OF ENERGY 

3 
In Subsec. 2.5.1, we showed that the translational kinetic energy per mole is - RT. 1,ikewise 

2 
we can calcr~late the contribution to energy arising out of rotation and vibration of molecules. 
Each mode of motion is called a degree of freedom. All gaseous molecules have three 
translational degrees of freedom. This is so since the translational motion is described by three 
independent coordinates. Apart from the translational degrees of freedom a linear molecule 
has two rotational degrees of freedom since rotation is possible only around the two axes 
perpendicular to its molecular axis. A non-linear molecule can rotate around all the three 
mutually perpendicular axes and hence has three rotational degrees of freedom. 

A molecule having F atoms (i.e., atomicity is I-') has totally 3 F  degrees of'freedorn because 3F 
coordinates arc required to locate their nuclei in space. That is, the sum of translational, 
rotational and vibrational degrees of freedom for a molecule is 3F. Thc vibrational degrees of 
freedom for linear and non-linear molecules can be calculated using the following expression: 

Vibrational degrees of freedom - 3 F  - (sum of translational and rotational 
of a molecule having F atoms degrees of freedom) 

Fig. 2.6 : Distribution of speeds of 

nitrogen molecules at three 
different temperatures. 

The importance of the temperature- 
molecular speed relationship on 
reaction rate will be discussed in the 
unit on chemical kinetics. 
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Molar heat capacity is the quantity 
of heat required to raise the 
temperature of one mole of a 
substance through one degree kelvin 

Molar heat capacity = Molar 
mass X specific heat 

C, CV, and R have the same units, 

. . 

28 

Hence, a linear molecule has 3F - (3 + 2) = 3F - 5 vibrational degrees of freeddm. But a 
non-linear molecule has 3F - (3 + 3) = 3F -- 6 vibra~onal degrees of freedom. For 
example, carbon dioxide ( F  = 3, a linear molecule) has (3 X 3) - 5 == 4 vibrational degrees 
of freedom and water (F = 3, a non-linear molecule) has (3 X 3) - 6 = 3 vibrational 
degrees. of freedom. 

So far, we have calculated the degrees of freedom for each kind of motion. We can calculate 
the energy of molecules due to each kind of motion using the equipartition theorem of classical 
physics. This theorem can be stated as follows : 

1 
"The average eilergy of eakh different mode of motion of one mole of molecules is -KT." 2 
Thus each translational and rotational degree of freedom contniutes energy equivalent to 

I 
- K T  to the energy of one mole of molecules. But each vibrational degree of freedom must 
2 

contribute R T  to the energy. This is because vibrational motion bas both potential and kinetic 
1 

energy associated with it and each contributes - R T  to energy. Using this principle, the total 
2 

energjr (U) of the gaseous molecules can be calculatd. From the U values at different 
temperztures, molar heat capacity values at constant volume (6) and at constant pressure 
(C,) can be calculated using the following expressions (which we shall derive in Unit 6 of 
Block 2 of this course) : 

The contribution R T  to energy due to each vibrational degree of freedom is significant only 
at high temperatures. At room temperature we need consider only contribution due to 
translational and rotational degrees of freedom. This is evident from the molar heat capacity - - 
values and Cp/C, ratios of some gases at 298 K given in   able 2.1. Classical physics cannot 
explain as to why contribufion to heat capacity values due to vibrational degrees of freedom 
is significant only at  high temperatures. In Unit 1 of Atoms and Molecules course, we 
explained this using the principles of quantum mechanics. 

Tnbk 2.1 : E', adz. values at 298 K 

. tb - 
- E, r P  

Typeoftbe Emnple Degasof 
T, - 

mdecslle fl-axrl J md-' J md-' K-I J ma-' K-' E, 
3  7 5 

Mon~atoinic~as Helium 3 (translationalj - RT : R  - R  1.66 
2 2 2 

2 
Diatomic gas Carbon 3 (traala&nal) Z R ~  I 

monoxide 2 5 7 
-R' 1.40 

2 (rotational) 2 X - RT 2 
2 

1 ( n i  oor 
active at 298 K) 

3 
Non-linear Water 
tnatomic L 

3RT 3 R  4 R  1.33 
molecule 

3  ( v i i d  wt 
active at 298 K) 

SAQ 8 
The specific heat of a gas at constant volume at 298 K is 692 J kg-' K-' and its molar mass 
is 0.01 d kg mol-'. What is the value for G/CV ratio for the gas? - 
(Hint : Cv = specific heat at constant volume X molar mass) 



..........................................<......._....._. 
Kinetic Theory of Cases 

2.1 1 INTERMOLECULAR COLLISIONS 

A cubic metre of ni%rogen3gas at room temperature and pressure contains about 
2.462 X 10" molecules (Subsec. 2.8.2) moving with an average speed of 474.8 m s-' 
(Sec. 2.9). In a gas, the molecules are not only in continuous motion, but also are constantly 
colliding with one another. Because of collisions, a molecule changes its direction often and 
moves i~ a zigzag way. The path of such a molecule can be imagiried (as in Fig. 2.7) to be 
within a twisted cylinder. An estimate of the number of collisions taking place in one 
second in unit volume (known as total collision frequency) can be  made by introducing the 
concept of molecular size. For the sake of simplicity, the gas molecules are considered to be 
hard spheres with diameter a. Thus, two molecules will collide with each other ('hit') if 
they are within a distance a. If the distance is more than a, the two molecules do not collide 
('miss'). Fig. 2.7 depicts the motion of a molecule and indicates the condition under which 
it hits or misses another molecule. 

Gas rnolecJle with radius 012 I 
Zigzag path of the molcculc 

Fig. 2.7 : The zigzag motion of a molecule. 
0 Miss 

Since the average speed of a mlolecule is u, it covers a distance equal to i in one second. 
Due to its zigzag motion, all rnolCcules present in the twisted cylinder with base equal to 
ro2 collide with the moving molecule. If there are not too many bends, then the volume of 
the cylinder is given by Eq. 2.49. 

Volume covered i;y the ms!ecule in one second,= base of the cylinder X height 
-- To2G ... (2,49) 

The number of molecules present per unit volume (number density) is no. The collision 
frequency for a single mb~ecde  (z, I )  is equal to the number of collisions a rrlolecuie 

' 

undergoes in one second. It is given by the prodact of the volume covered by the molecule 
in one second and the number density. 

In the derivaiitln of Eq. 2.50, we Rave assumed that only one molecule moves and the 
others are static. In reality, all the molecu!es are moving. To account For this fact, the 
relative average speed u a should be ~ s e d  instcad of ld In Eq. 2.50. Hence the co!!isIon 
frequency for a single molecule, 

Eq. 2.51 gives the number of collisions experienced by one moiecule in unit time. The 
number of collisions experienced by all the molecules in unit time in unit volume (i.e., total 
collision frequency, 21 1) is given by 

Total colljsion freauencv is an 
I I 

- 
.rrozUn2, ... (2.52) important parameter in deciding the 21, = - t ~ ! n o  =-- 

2 r6-  reaction rate. We shall study this in - v ' 
1 the unit on chemical kinetics. 

The factor 7 has been introduced so that collision between any two molecules is not 
L 

counted twice. 



Matter Let us illustrate the calculation of total collision frequency of nitrogen at 298.2 K and 
1.013 X 10' Pa using Eq. 2.52. The collision diameter of nitrogen is 3.740 X 10"~m. The 
following steps are used in calculating the total collision frequency: 

Step (i) : Calculation of number density (no) of nitrogen : 
This has been already worked out in Subsec. 2.8.2. 

no = 2.462 X loZS m-3 

Step (ii) : Calculation of average speed of nitrogen: 
This has been worked out in Sec. 2.9. 

i = 474.8 m s-I 

Step (iii) : Calculation of total collision frequency : 
Using Eq. 2.52, 

= --I. X 3.142 X (3.740 X lo-" m)' X 474.8 m i1 X (2.462 X 10" m-')' JZ 

2.12 MEAN FREE PATH 

An important quantity in the kinetic theory of gasesis the .mean free path, A. This is the 
mean distance travelled by a gas molecule between two consecutive collisions. An equation 
useful in calculating the mean free path can be derived as follows : 

Distance travelled by a mol'ecule in one second = u 
Number of collisions per molecule in one second = 21 I 

Mean free path (A) = Distance travelled between two consecutive collisions. - 

- - U 
(using Eq. 2.51) Jz ra2 ino  

i.e., 
1 ... = JZ ria2 no 

(2.54) 

It can be seen that A is inversely proportional to no and hence it should be inversely 
proportional to pressure (Subsec. 2.8.2). The lower value of A at higher pressure is 
understandable since at higher pressure, a molecule will undergo larger number of 
collisions. It may also be noted that the mean free path is inversely proportional to a'. This 
means that a larger molecule will have greater chance of couisions. As a matter of fact, 
quantity ra2 is called the cotlision cross section of the moleicule in the hard sphere model 
proposed for gas molecules. 

Using the above principles, work out the foltowing SAQ. 

SAQ 9 
Calcuiate the mean free path of nitrogen molecule at 298.2 K and 1.013 X 10' Pa. its 
collision diameter is 3.740 X 10-lorn. 

2.13 SUMMARY 

In this unit, we have discussed some characteristic features of gases. Laws governing the 
behaviour of .gases at low pressures and high temperatures are stated and explained. It  has 



been shown how a simple kinetic molecular model of the gas can be used to derive an 
equation to calculate the pressure exerted by a gas. This equation can be used further to 
derive the ideal gas equation. This model is useful in showing how the constant collisions 
between molecules are responsible for a distribution of the speed of molecules. Further, this 
model helps us in deriving expressions for various kinds of speeds. We have also evolved a 
method of calculating the total collision frequency and the mean free path assuming hard 
sphere model for the molecules. 

2.14 TERMINAL QUESTIONS 

1) Calculate the molar mass of a gas for which density is 1.250 X 10' kg m-3 at 273.2 K 
and 1.013 X 10' Pa. 

2) 1.000 X lo-' m3 of argon at a certain pressure and temperature took 151 s to effuse 
through a porous barrier. How long it will take for the same volume of oxygen.to 
effuse under identical conditions? 
LHint : The time taken by a gas to effuse varies inversely as its rate of effusion.] 

3) A mixture of 2.00 X kg of H2 and 2.00 X kg of He exerts a pressure of 
1.50 X lo5 Pa. What are the partial pressures of H2 and He? 

4) Calculate the ratio of mean square speeds of oxygen to nitrogen at 300 K. 

5) Calculate the number density and concentration of oxygen at 1.013 X lo5 Pa and 
300 K. 

6) What is the C,/C, value of a non-rigid diatomic gas? 
[Hint : A non-rigid molecule has vibrational degree of freedom too.] 

2.15 ANSWERS 

Self Assessment Questions 

P M ~  Density = w/V = - 
R T  

2) 6.022 X molecules. 

3) Total number of moles (nt) 
= nN2 + no2 + nc~4  = 5.00 m01. 

I 
n,RT 

Total pressure (p) = - v 
-. - 5.00 mol X 8.314 J K-' mol-I X 250.2 K - 

0.0600 m' 

= 6.92 X lo4 Pa 
Similarly po2 = 3.46 X lo4 Pa 
and pw, = 6.92 X lo4 Pa 

4) Nitrogen 



States of Matter 6 )  Root mean square speed of hydrogen at 500 K -- =dy = J ~ K - ' X S O O K  0.002 kg mo~-' 
- 

= 2.50 X 10.' in s-'. 

- 
7 )  ump : u : u,,, 

2RT 3RT 

2RT 
= 1.000 : 1.128 : 1.225 (Dividing by \l= ) 

Mm 
The above ratio does not vary with temperature since temperature term does not appear 
in it. 

8 )  C, = 692 J kg-' K-' S 0.01 8 kg mol-' 
= 12.5 J mol-I K-' 

Since C,= C, + R 
C,, = 20.8 J mol-' K-' 

9 )  A =  
1 

4 ra2no 
Using no calculated in Subsec. 2.8.2, 

Terminal Questions 
1) Molar mass of the gas = 28.02 kg mol-I. 

2)  The gas with the smaller molar mass effuses at  the faster rate, which m a n s  that it takes 
less time for a given quantity of gas to effuse. That is, time ( t )  taken by a gas for effusion 
varies inversely as its rate of effusion (r). 

1 .'. t a - 
r 

But according to Graham's law, r a 
1 

dS 
.'. t a J Molar mass 

Molar mass of argon 

2 
U Oxygen - 7 4 )  7 -- 
uL Nitrogen 8 

5)  Number density = 2.447 X 10" m^3; 
Concentration - 40.61 mol m-'. 

6 )  U = ( 3 X R T / 2 ) + ( 2 X R T / 2 ) + ( 1  X R T )  
= 7 / 2  RT 

9 & = 7 / 2   and Cp = - R 
- 7 9 

2 
Hence, C,/C v - -,T 



UNIT REAL GASES AND THEIR 
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3.1 Introduttion 

Objcctivcs 

3.2 Deviation from Ideal (;as Rehaviour 
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3.5 Critical Point and ('ritical.Cohstants 
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3.6 Equation of Corresponding States 
3.7 Liyuetaction of Gases 

Lindr's Mcthod 

CI:~udc's Method 

3.8 Intermolecular Forces 
van dcr W a d \  Forcch 
Tol:~l 1nrcrd;rion Energy 
H ~ J r o ~ c n  Bonding 
Efl'ccr of Molecul;~l. Inrcraction., on Ph>\ic'al Propertiez 

3.9 Summary 
3.10 Terminal Questions 
3.1 1 Answers 

The gas laws developed*in Unit 2 are based on certain assumptions regarding molecules and 
thc~r interaction with each other. Some of these assumptions are not valid under all 
conditions: the gases obey ideal gas laws only :rt [ow pressures and high temperatures. To 
start with,' thc deviation of the real gases from ideal gas behavio'ur will be discussed in this 
unit. The features of the isotherms at different temperatures will he explained. Afterwards, 
van 3er Waals e&ation will be deduced. This will be follnwed by a discussion on critical 
phenomena and critical constants. The relationships between critical constants and van der 
Wa:lls constants will be derived. The principle of corresponding states will be explained. 
After this, the methods of liquefaction of gases will be outlined. Finally the nature of 
intermolecular forces and their effect on gases will be discussed. The study of intermolecular 
forces will help you understand the properties or liquids and'solids which we will take up in 
units 4 and 5, respectively. 

Objectives 
After studying th~s  unit, you should be able to : 

state the difference in behaviour between real and ideal gascs, 
deduce van dcr Waals equation, 
define the terms critical temperature. critical pressure and critical volume. 
derive the relationships between the critical constants and van der Waals constants. 
state and discuss the princ~ple of corresponding states, 
state the principles of liquefaction methods, 
explain the nature of intermolecular forces, and 
discuss the effect of intermolecular forces on the condensation of gases into liqc~itl\ and 
solids. 

3.2 DEVIATION FROM IDEAL GAS BEHAVIOUR 

An ideal gas is a hvpothetical concept. The reg11 gases obcy ideal gas laws only at low 
pressures and h~gh temperatures.-Betore going into the reasons for the deviation from ideal 
gas behaviour, let us study the behaviour of gases at different pressures and temperatures. 



For real gases, rhe value of z is 
greater than or less than unity. , 
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p!atm 

Fig. 3.1 : Plots of z against p for 
several gases. 

0.61 I I I I 
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~ l a t m  

Fig. 3.2 : Plots of z against p for 
nitrogen gas at three temperatures 

The van der Waals constant 'b: is 
equal to the excluded volume of one 
mole of a gas. It can be shown that 
'b'is equal to four times the actua! 
volume of the molecules. The 
constant b' has the oniu, m' mol-' 

Fig. 3.3 : The attraction experienced 
by the molecules 01 a gas. 

Liquefaction of gases (sec. 3.7) 
clearly indicates the presence of 
forces of attraction among gaseous 
rnolec~~les. 

The cttnstanr 'o'has the units 
Pa rn6 rnol-' 

Behaviour of-Real &ses 
Experimentally, the behaviour of a gas-can be studied by measuring its pressure. volume. 
tempehture and the number of moles. If it behaves ideally, its compressibility factor. I, 
which is defined by Eq. 3.1 must be equal to I .  

If z deviates from the value of unity, the gas is said to deviate from ideal behaviour. In 
Fig. 3.1, z is plotted against pressure for several gases. We  notice that all gases approach Ideal 
behaviour at !ow pressures. This is inferred from the fact that z approaches unity at low 
pressure for all gases. 

T o  illustrate the effect of temperature, z is plotted against pressure for nitrogen gas at three 
temperatures in Fig. 3.2. Note that the curve at high temperature (673 K )  approaches ideal 
gas behaviour much more'than the curves at lower temperatures (203 K and 293 K). This is 
true of all the gases. T o  sum,up, the gases behave ideallj at low pressures and at high 
temperatures. . 
van der Waals derived an equation of state for explaining the experimental facts of the 
behaviour of gases. We shall study this in the next'section. 

3.3 VAN DER WAALS EQUATION 

The origin of the deviations from ideal gas behaviour lies in two faulty assumptions of the 
kinetic theory of gases (d immed  in Unit 2) .  Firstly, the volume of a molecule is.by no 
means negligible a$. cannot be ignored under all conditions. Secondly. there certainly 
exists intermolecular interaction between molecules at close distances. van der Waals 

' 

modified the ideal gas equation by taking into account the above shortcomings. 

Volume Correction : van der Waals realised that the molecules of a real gas have definite 
volume. Therefore. the entire volume (V) of the container is not available for the free 
movement of the gas molecules.The \olume available for the motion af the molecules can 
be given by ( V  - nb), where n  is the number of moles of the gas and '6' the. correction in 
volume for one mole of the gas. The quantity 'h' is known as co-volume. 

Hence, corrected volume = V,,,,! = V - nb ... (3.2) 

Pressure Correction : van der ~ a a l s  applied pressure correction by taking into account the 
intern~oiecular forces. The pressure of a gas is due to the collision of the gas molecules on 
thc walls of its container. Consider two identical molecules in  a gas such that one is 
somewhere in the middle of the container aqd the othei- just strikes the wall (Fig. 3,3). 
It can be seen that a molecule.in the middle o.f tho containcr is attracted on all sides uy the 
othcr molecules surrounding it. However, in cas; of a molecule which just strikes the wall. 
there is a net backward drag on the molecule and it will strike the wall with a somewhat 
k a k e n e d  impaci. ~ e n ' c c ,  the observed pressure (p) of a gas will be less than the pressure 
exerted by an ideal gas. A pressure correction is, therefore. t o  be applied. The correction . 
term in pressure {Ap)  is proportional to two factors, vi7.. 
@ the number of molecules striking the wall per unit aica and 
@ ihe number of molecules attracting a molecule from behind. 

Each of the above factors is proportional to the concentra!ion of the gas. 
i.e.. Ap cc (concentration)" 

Number of moles ( n )  
But the concentration of the gas = -- Volume of the container ( 6 
Hcnce, it can be written that, 

where 'u' is a parameter characteristic of a gas. Henge the corrected pressure @,,,,) is given 
by, 



If the corrected pressure and the corrected volume of the gas are substituted in the ideal gas 
equation (Eq. 2.9), we obtain 

n'a 
@ + ~ ) ( v - n b ) = n R ~  ... (3.5) 

This equation is known as van der Waals equation. Since for one mole of a gas, V =-, V,,, 
(i.e.. molar volume) and n = 1, hence. Eq. 3.5 becomes 

van der Waals cquatlon (Eq. 3.5 or 3.6) is quite important and is applicable over a much 
wider range of p - V- T data than the ideal gas equation. The' quantities 'a' and 'b' are 
called the van'der Waals constants or parameters. The values'of 'a' and 'b' are obtained 
empiri<ally by fitting in experimental p- V- Tdata to Eq. 3.5. It may be pointed that 'b' is 
a measure of the molecular size and 'a' is related to the intermolecular interaction. Table 3.1 
gives the values of the parameters 'a' and 'b' of some selected gases. It can be seen that 'b' 
increases as the size of the molecule increases whereas 'a' has large value for an easily 
compressible gas. The values of the critical consrants p ,  V, and T, are also given in Table 
3.1 and their significance will be dealt with in Sec. 3.5. 

Table 3.1 : van der Waals Parameters and Critical Constants of Some Gases 

Gas ( 'a'/~a,m~rnol-'( lo6 X !b'/m'mol-'1 lo-' X p./Pa ] lo6 X ~c/rn'mol-~ 1 T,fl( 

H e .  1 0.003457 1 23.70 1 2.20 . 1 57.8 1 5.21 

H2 

0. 

N 2 

CO? 

Explanation of the Behaviour of Gases using van der Waals Equation : 
Many a times, either one or both the correction terms could become negligible. Let us  study 
these cases. 

When 'b' is negligible 

If 'b' is very &all, then Eq. 3.6 becomes, 

This shows that under these conditions, p ~ , , ,  will be less than R T o r  z will be less than 
unity. Eq. 3.8 will Lie valid for substances like water vapo,lr for which 'a' is large and '6' is 
co~nparatively small (See Tab!e 3.1). Also for gases such as N2, CH4 and C02  (Fig. 3.1) at 
moderately low pressures, V, is large such that (V* - b )  is   early equal to V,. Hence, Eq. 
3..8 is applicable for such gases at moderatety low pressure*. 

When 'a' is negligible ' 
If 'a' 1s negligible, we have 
p(V,,, - b )  = RT ... (3.9) 
i.e., pV, = RT + pb 

Hence, pV,,, will be greater that RTor  z will be greater than unity. Particularly this is'true 
for hydrogen (Fig. 3.1) and noble gases for which the value of 'a' is small. This is also true 

Renl Cnwr and their Liquefartlon 

To help you use Table 3.1, the 
actual values of the parameters for 
methane are given below 

a = 0.2283 Pa m \ n o ~ - ~  
b = 42.78 X 1 0 - b '  mol-' 
p, = 46.41 X 10' Pa: 
V,, = 99.0 X lo-" m3 mol-' 
T, = 191.1 K .  
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a 

for all the gases at high pressures; since then - is negligible in comparison top.  v: 
When a and b are both negligible 
When pressure is very low or the temperature is very high, p is small but V,,, is very large. 

a 
In this case, the correction terms, - and h are both negligible in comparison t o p  and V,. 

It 
Hence, at very low pressures or high temperatures, the gases obey ideal gas equation and 
their z value is nearly equal to unity. 

Let us now illustrate the use of Eq. 3.5 in the calc~~lation of pressure of 2.000 mol of 
methane at 1.000 X lo3 K occupying a volume of 5.000 X lo-' m3 

Rearranging Eq. 3.5 we can write, * 

nR T nL a 
-7 P =  ( V - n b )  V 

From Table 3.1, a = 0.2283 Pa m6 mol-' 
b = 42.78 X lo-' m3 mol-' 

substituting the values of-the parameters we get, 
2.000 mol~'8.314 J mol-I K; ' X 1.000 X 10' K - (2.000 pal)z X (0.2283 Pa mb mol-l) 

= (5.000 X 10-' m' - 2.000 mbl X 42.78 X mm' mol-I) (5.000 X 10-I m3)' 
p = 3.328 X 10' Pa 

Applying van der Waals equation to methane at 1.000 X lo3 K, the pressure calculated is 
3.328 X 10' Pa. 

Let us also calculate the pressure of methane using the same values of n, T and V but 
assuming [deal behaviour. 

It is interesting to see that the pressure values of methane obtained by van der Waals 
equation and ideal gas equat~on at 1.000 X lo3 K are more or less same. This indicates that 
the methane behaves ideally at 1.000 X lo3 K. 

Virial Equation of State 
A number of attempts have been made to propose equation ef state for real gases. These are 
supposed to represent the p - V - Tdata over as wide range as possible. However, from 

I practical consideration, it is desirable that the equation of state shouid have only a few 
adjustable parameters. It should be simple from mathematical point of view. 

The most general equation of state was proposed by Kammerlingh-Onnes and is known as 
1 virial equalion of state. In this equation, the pressure is represented as power series of 

1 
I - as under : , v n ,  

The coefficients B ( q ,  C(T) ... are known as virial coefficients. It may be noted that these 1 depend on temperature. By having sufficient number of terms in this equation, p -  Y -  T 
data can be repr~.rented to desirid accuracy. 

In the next section, we introduce the critical phenomena and then study the relatlonsh~p 
between van der 'Naals constants and critical constants. Before that, work out the following 
SAQ. 

SAQ 1 
Cakuhe the pnssure of 2.000 mol of methane at 298.2 K using the other'dala from the 
above illus~ratton and assuming that it obeys van der Waak equation. Also caktllaie ~ t s  
value, if meth:ine were lo b e h v e  idealtk at 298.2 K. 



3.4 CRITICAL PHENOMENA Real Gases and their Liquefaethm 

Andrcws performed a scrics of cxperirnents and obtained isotherms @ against V plots at 
constant tcmpcraturc) for carbon dioxide. The results obtained by him are.shown in 
Fig. 3.4. 

VimJ 
Fig. 3.4 isotherms of carhun dioxide. 

At high temperature, the isotherm is a hyperbola (curve I) in accordance with Boyle's law 
(Unit 2). At low temperatures, the ivotherms (the curves 11, 111 and IV) show considerable 
deviation from ideal gas behaviour. The isotherm at 304.2 K (curve 11) remains horizontal 
for a certain value of pressure. The two fallirrg portions, EFO and OGM, of curve I1 meet at 
0 .  The point 0 is known as the critical point; the temperature and pressure at this point are 
known as cr~tical temperature, T, and critical pressure, p,. 

Along OFE (i.e.. at prcssures above that of point O), the curve represents the liquid state 
while along OGH (at pressures lower than that at 0) the curve represents the vapour state. 
Note that the molecules in the gaseous state below the critical temperature are said to be in 
the vapJur state. Below the critical temperature (in this case 304.2 K), the isotherms (such 
as curves 111 and IV) take a general form consisting of (i) a low pressure region (AB) where 
there is only vapour, (ii) a flat constailt pressure portion (Be) representing the liquid-vapour 
equilibrium and (iii) a high pressure portion (CD) which is the isotherm of liquid carbon 
dioxide. At point B, the first drop of liquid appears and along BC, both the vapour and 
liquid forms of carbon dioxide are present. The pressure along BC is constant and is called 
the vapour pressure of carbon dioxide at the temperature of the isotherm. At C, the last 
drop of liquid is formed from the vapour. It can be seen that on changing from R to C ,  the 
volume has decreased due to conversion of vapour into liquid (without change in pressure). 
It  may be noted that the curve CD is much steeper than AB. This is because of rhe fact that 
liquids are much less compressible than gases and so a small change in volume requires a 
large change in pressure. An interesting obsen.at~on 1s that if the extremities of the 
horizontal portions like BC of different isotherms (like curves 111 and IV) are joined, a bell 
shaped curve is obtained with crest at 0 .  This is the area of discontinuity in which liquid 
an3 vapour coexist. Outside this area, thtre is either oniy gas (or vapour) or only liquid 
carbon dioxide. 

Now the question arises whether it is necessary to cross th~s  area of discontinuity when the 
gas is converted into liquid or itice versa. The answer is no. For exanp!e, assume that there 
is a certain amount of vapour with pressure and volume corresponding to thilpoint Q.,lt is 
desired to convert this into liquid directly without the simultaneous presence of both liquid 
and :,apour. For this, we have to avoid passing through the bell-shaped area, BOC. First of 
all we can heat the vapour at constant volume until it reaches a point R which lies above 
the critical pressure and temperature. The gas is then cooled at constant pressure which 
results in decrease of volume up to the point S. Now the volume is kept constant and the gas 
again cooled.unti1 the point T is reached, which results in the decrease of pressure. We see 

, that as a result of these changes, the gas changes over to the liquid state without any 
discontinui!;. 

Thus, it can be seen that along the path QRST, the substance remains wholly in the gaseous 
state or in the liquid state. This is called the continuity of state. That is, the gas and the 
liquid are the combination of the same state and it is not necessary to pass through both the 
states simultancously in their interconvtrsion. The gaseous anc! liquid states are collectively 
known as fluid.. 

The point 0 where two falling 
curves, EFO and OGH, meet i s  
mathematically known as inflection 
point. Around this point, the curve 
remains horizontal. That is, around 
this point, volume change does not 
produce pressure change. 
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3.5 CRITICAL POINT AND CRITICAL CONSTANTS 
PP 

Without going into the process of continuity of state, one gets the feeling that if we apply 
enough of pressure on a gas we should be able to liquefy it. However, it is an experimental 
observation that a gas does not liquefy above a certain temperature, however, high may be 
the pressure. The characteristic temperature above which a vapour does not liquefy is callcd 
the critical temperature (T,) .  The vapour pressure of a liquid at its critical temperature is 
called its critical pressure (p,) .  It is the minimum pressure required to produce liquefaction 
of a vapour at its critical temperature. The volume occupied by one. mole of a fluid at its 
critical temperature and pressure is called critical volume ( V . ) .  Let us now see how T,, p,, 
and V, are related to van der Waals constants. 

3.5.1 Critical Constants and van der Waals Constants 
The van der Waals equation (Eq. 3.6)  can be made the basis of a theoretical consideration. 
The curves in Fig. 3.5, known as van der Waals isotherms, show the isotherms calculated 
on the basis of this equation. 

Expanding Eq. 3.6 we get, 
a 

( p  + - ) ( V m  - b ) =  RT 
v; 

a a b  
i.e.,pVm - p b + -  - -=  RT 

v m  v; 
v: 

Multiplying the equation throughout by - * we obtain, 
p 

aV,  a b  R T V ~  G - b v : + -  --=- 
P P P 

RT a ab - 
i.e., - V: ( b  + -) + - Vm - - - 0 ... (3.13) 

P P P 

This cubic equation will yield three values for Vm corresponding to a given pressure and 
temperature. All the three values of V,,, may be real or one may be real and the other two 
may be complex conjugates. Isotherms 111 and IV do yield three values of Vm in certain 
ranges of p. and V. This is true in general for all isotherms below the critical temperature. 
Curve I1 corresponds to critical te&erature and curves at higher temperature (such as curve 
I) approach the isotherm representing the Boyle's law. These theoretical curves are simila'r 
to those obtained by Andrews for C02 but a major difference is the wave like portion 
BCDEF in the theoretical curves. If experiments are performed without perturbance, then 
portions BC and EF are realisable; these portions represent the supersaturated vapour and 
superheated liquid, respectively. 



The wave like portion kcreases as temperature increases. At the critical temperature, it is Real Cases and their Liquefaction 
reduced tc il point wbicb rrdeans that all the three roots of Eq. 3.13 are identical and equal 
to the crilleal v~ \ume ,  V,. 

We can obtain a cubic equation by raising it to power three, i.e., 

This equation should be identical with the expanded form of van der Waals equation 
(Eq. 3.13) at critical temperature and pressure * 

Now comparing the coefficients of equal powers of V,  in Eqs 3.15 and 3.16, we obtain 

ab ab 
and-  V ; ! = - - o r e = -  .. (3.19) 

P,: PC 
From Eqs. 3.18 and 3.19, we obtain 

Substituting the value of Vc in Eq. 3.18, 

From Eqs 3.17 and 3.20, we get 

a I 
= 8 b .  - . - (using Eq. 3.2 1) 

27b: R 

Hence, the values orpc, Vc and T, can be calculated from van der Waals constants 

3.5.2 Determination of Critical Constants 
Let us study the experimental method ofdetermination of critical constants. 

Critical Temperature 
A capillary tube capable of standing high pressure is evacuated and filled with the liquid 
and sealed. This is placed in an aluminium block having a window. The system is then 
heated and the meniscus of the liquid is kept under observation through the window. 
Initially, the liquid is in equilibrium with the vapours and a distinct boundary can be seen. 
As soon as the critical temperature is reached, the boundary disappears. The experiment is 
repeated a number of times by varying the temperature in both directions. The mean is then 
taken as the experimental value of critical temperature. 

Critical Pressure 
The gas under observgtion is taken in a high pressure vessel at the critical temperature. 
Initially the gas pressure is kept low. Slowly the gas is compressed at constant temperature 
As soon as the vessel inside is covered with mist, it indicates the formation of some liquid 
and this pressure corresponds top,. Since the' pressure is generally much higher than what 
an ordinal  manometer can measure, speciizl pressure gauges are to be used. 
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Critical Vdume 
Critical volume is determined indirectly based on the findings ofcailletet and Mathies. 
According to them, a plot of the mean values of the densities of a liquic and its saturated 
vapour against temperature is a straight line (Fig. 3.6). 

It is clear that the density of the vapour (curve I) increases with the increase in temperature 
because the evaporation is higher at higher temperature. But the density of the liquid 
decreases as temperature increases (curve 11). At the critical temperature, the two densities 
must be equal. However, due to fluctuations it is very difficult to measure the density at T,. 
Hence, the two curves, I and I1 are extrapdated to give a continuous curve. The mean 
density is now plotted to get curve 111 and extrapolated to intersect the combined curves I 
and I1 at C. The density at C, known as critical density, represents the density at T,. From 
this, the critical volume is calculated using the relationship, 

~ Some of the experimental values of the critical constants are already given in Table 3.1. 

3.5.3 Test for van der Waals Equation 
The calculation of the compressibility factor at the critical point (z,) based on experimental 
pc, Vc and Tc values can be a test for van der Waals equation. Theoretically the value of z, 
can be derived as follows : 

For most gases, the value of z, obtained from the experimental values of the critical 
constants lies between 0 2-0.4. This variation from the theoretical value of 0.375 indicates 
the approximate nature of van der Waals.equation. Why don't you apply these principles in 
solving the following SAQs? 

SAQ 2 
Inaane gas supplied for household use is mostly a mixture of propane and butane. Are the 
critical temperatures of these two gases higher than 298 K? 



SAQ 3 
Using PC, PC and Tc values of methane'frorn Table 3.1, calculate the value of z,. Does 
methane obey van der Waals equation at the critical point? 

Heal (;ases and  heir l..iqucl'artion 

3.6 EQUATION OF CORRESPONDING STATES 

The pressure, volume and temperature of a gas when expressed in terms of the critical 
constants are called reduced quantities. Mathematically, the reduced parameters are defined 
as follows : 

P Thus, reduced pressure = n = -or p = np, ... (3.24) 
PC 

vr" 
Reduced volume = 4 = - or V,,, = 4V, . . . .  (3.25) 

v c  

T 
Reduced temperature = 8 = - or T = BT, 

Tc 

These quantities were introduced by van der Waals in the hope that one single equation 
could be obtained which is valid for all substances. Using Eqs. 3.6,3.24,3.25 and 3.26 we 
obtain, 

a 
(y + 2) (4Vc - b) = ROT, 

4 v c  

Now substituting the values ofpc, Vc, and T, from Eqs. 3.20-3.22, 

a 
Dividing both sides by 276 * 

This is known as the equation of the corresponding states. It should be valid for all gases. In 
general, if any two gases have the same values for any two of the reduced quantities ( n ,  4 
and O), then the values of the third will also be equal and the two substances are said to be 
in the corresponding states. This is also called the principle of corresponding states. It tells 
us that if the isotherms are plotted in terms of reduced quantities (T and 4 at constant O), 
the same curves should be obtained for all gases. 

Using Eq. 3.34, work out the following SAQ. 

SAQ 4. 
Using the values of PC and for methane from Table 3.1, calculate its reaced 
temperature if it occupies 5.000 X 10-2 m3 space at 3.328 X 10' pa. 



3.7 LIQUEFACTION OF GASES 

The superconducting materials 
conduct electricity without offering 
resistance. There 1s no energy loss as 
heat during such electric conduction. 
The superconducting materials are 
extremely uscful in power 
transmission, computers, the 
development r,f nuclear fusion 
pawer and superfast trains, disease 
diagnosis and so on. 

The inversion temperature (1;) of a 
gas is related to its van der Walls 
constants as per the equation. 

For hydrogen gas, the inversion 
temperature calc~~lated as per this 
equation is 223.8 K. 

The critical phenomena and the knowledge of the critical constants have a practical use in 
the liquefaction o l  gases. The liquefaction of air is important in the manufacture of nitrogen 
and oxygen which are both important industrial chemicals. The liquefied petroleum gas 
(mixture of propane and butane) is used as a domestic fuel. Liquid helium and, nitrogen are 
particularly important for making the materials superconducting. Easily liquefiable gases 
such as ammonia and dichlorodifluoromethane (freon) are used in refrigeration and air 
conditioning. 

Let us now study some methods of liquefaction of gases. It has already been clarified that a 
gas cannot be liquefied above its critical temperature. Many substances like water, ethyl 
alcohol etc., have, high critical temperatures and hence exist as liquids even at room 
temperature. Others like ammonia, sulphur dioxide etc:, under ordinary conditions are 
above their crtt~cal temperature but can be easily liquefied by cooling using freez~ng 
mixtures under moderate pressure. This implies that the fre,ezing mixture lowers the 
temperature of a substance below its critical temperature and the moderate pressure is then 
sutf~cient to ltquefy the gas. On the other hand, there are many gases iike oxygen, nitrogen, 
hydrogen and helium whose critical temperatures are much lower. Special methods are' 
adopted to cool these gases below their critical temperature. Let us study the principles of 
two of the common methods of liquefaction. 

3.7.1 Linde's Method 
This method is based on the principle known as Joule-Thomson effect. According to this 
effect, when a gas under high pressure is allowed to expand into a region of low pressure, its 
temperature falls. The gas does not do any external work but the kinetic energy and hence, 
the temperature of the gas is lowered because of the work done in separating the molecules 
against their attractive intermolecular forces. A precaution is required in this process. To 
have a cooling effect, a gas is to be brought below a characteristic temperature, known as 
inversion temperature, before allowing it to expand. If the temperature of the gas is above 
its inversion temperature, Joule-Thomson expansion results in heating. 

The schematic diagram of the equipn~ent used is shown in Fig. 3.7. 

Gas 

Fig. 3.7 : Liquefaction using Linde's method 

Tha gas at a temperature lower than its inversion temperature is compressed using a 
compressor. This gas is then allowed to expand through a valve which results in  its cooling. 
Thecold gas is.used in cooling the high pressure gas in the heat exchanger and is 
recirculated through the compressor. It'gets cooled still further, as i t  expands. The cycle 
continues till the liquefied gas drops from'the throttle. 

3.7.2 Cla.ude's Method 
Claude's method (Fig. 3.X), is more efficient than Llnde's method. The compressed gas in 
the insulated vesscl (i.e., under iitliabatic conditions) is partly used to do work against a 
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Heat exchanger F V A - Z  I-\ 1- Gu 

molecules results in their cooling. 

Fig. 3.8 : Liquefaction using Claude's method. 

piston in a cylinder and partly expanded throtlgh a valve. The cooled gas obta~ned by 
adiabatic expansion is used for cooling the incoming gas in the heat exchanger. The process 
is repeated till the gas is liquefied. 

Us~ng the principles of Linde's method, answer the following SAQ. 

SAQ 5 
If hydrogen gas is allowed to undergo Joule-Thomson expansion at room temperature, it is 
heated but not cooled. Explain. 

In Sec. 3.3, we have studied that the real gases deviate from the ideal aas behaviour I 
because of the presence of intermolecular forces. The intermolecular forces are also 
responsible for the conversion of gases into liquids and solids. van der Waals not onlv 

Attractive forces between uncharged 
atoms or molecules are known as 

derived an equation to explain the behaviour of real gases but also tried to develop a model Van der Was's lorces. 

that would explain the behaviour of liquids. In recognition of his work, the weak 
intermolecular forces in liquids and solids are often called van der Waals forces. 

3.8.1 van der Waals Forces 
van der Waals forces include : I 
i) Dipole-dipole interactions . 
ii) Dipole-induced dipole interactions 
iii) London or dispersion forces 

Let us study them in detail. . I 
D i p o l e - D i e  Forces 
Polar molecules can attract each other electrostatically. During this attractioi the positive 

1 
end of one molecule is close to the negative end of the adjacent molecule, as shown in attractinn. 

Fig. 3.9. I 
Such an attraction is called dipole-dipole interaction. In the liquid state, although The dipole-dipole interaction 
molecules are in continuous motion, they tend to align themselves so that, on the average, between two HCI molec~rles is 130 
the intermolecular attractions are maximum. times weakerlhan the bond energy 

of HCI molecule. 

The interaction energy (V,,) between two polar molecules separated by a distance r is 
found to be 

directly proportional to the square of the product of the dipole moments of the two 
mdecu!es 



inversely proportional to temperature 
inversely proportional to r6 

London forces are the only attractive 
forces between nonpolar molecoies. 
Polar molecules have dipole-d~pole, 
dipole-induced dipole and also 
London forces. 

Dipole-Induced Dipole Interaction 
The dipole-dipole interaction can explain the attractive forces between polar molecules at 
ordinary temperatures whereas at high temperatures it cannot. It was thought that induced 
dipole interactions must.also be important. A polar molecule can induce a dipole moment 
in a neighbouring polarisable atom or molecule. Let us explain, the terms 'polarisable' and 
'polarisability'. An atom or rnolecule is said to be polarisable, if its electron cloudcan be 
distorted. The ability of a species to undergo electronic distortion is described in terms of 
polarisability. I he electron charge cloud of a larger atom (one with higher atomic number) 
can be easily distorted due to the following reasons : 

the electrons are more in number 
the influence of the nude.us is less due to larger distance 

So a larger atom has a higher polarisability. than a smaller atom. For example, argon has 
higher polarisability than helium. Similarly larger molecules (due to greater number of 
electrons) have higher polarisability than smaller molecules. For example, ethane is more 
polarisable than methace; propane is more polarisable than ethane, and so on. 

The dipole-induced dipole interaction between a polar molecule and a neighbouring 
polarisable molecule (in which dipole is induced) causes a lowering of energy. That is, such 
an attractive interaction adds to the stability. The interaction energy (V,,d) between a dipole 
and an induced dipole separated by a distance r has been estimated to be 

8 directly proportional to the square of the dipole moment of the polar molecule 
directly proportional to the polarisability of the molecule (in which dipole is induced), 
inversely proportional to the sixth power of r 

Unlike dipole-dipole interaction, dipole-induced dipole interaction is independent of 
temperature. 

Induced Dipole-Induced Dipole or London or Dispersion Interaction 
The two interactions mentioned earlier cannot explain the liquefaction bf gases like 
hydrogen, oxygen, chlorine, helium and argon-which are all nonpolar. London gave an 
acceptable quantitative explanation for the attractive forces existing between nonpolar 
molecules and hence such forces are called London forces. These forces are called 
dispersion forces since the oscillations producing the attractive forces are also responsible 
for the dispersion of light by the molecules. 

To understand the origin of this interaction, let us consider a pair of helium atoms. On the 
average the charge cloud around a helium atom is symmetrical. But the electrons 
surrounding the nucleus of the helium atom are in constant motion. Because of this, the 
helium atom can develop a momentary nonsymmetrical electron distribution. This results in 
a temporary dipolar arrangement of charge, otherwise known as instantaneous polarity. 
This helium atom which has instantaneous polarity can then induce a dipole in the 
neighbouring helium atom, Fig. 3. LO. 

k 
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Atom A Atom B 

Fig. 3.10 : Instantaneous dipole on atom A 
induces a dipole on atom B. 6' and 6- refer to 
dipolar charges and + stands for the nudes. 



The resultant induced dipole-induced dipole attraction is both weak and short-lived. But Real Gases and their Liquefaction 
this can be very significant for large atoms (or molecules) which have high polarisability. 
For these interactions to become strong enough t~ produce s solid or a liquid, thermal 
motions must be decreased. This explains why noble gas elements have low liquefaction 
temperatures. The interactions explained above are also responsible for the liquefaction of 
nonpolar molecules like Hz, CH4. CCI4 and COz. 

The interaction energy (Vd,,) between two noble gas atoms or two nonpolar molecules 
separated by a distance r is 

W directly proportiopal to the product of the polarisabilities of the two species 
inversely proportional to the sixth power of r, 

1 
i.e., VdtS cz 7 

r 

3.8.2 Total Interaction Energy 
All the three types of interactions explained above are attractive in nature and can account Coheslve force is responsible for the 

For the cohesive forces responsible for liquefaction of gases. It must be remembered that condensat~on of a gas into a I I ~ U I ~  or 
solid van der Waals forces repulsive forces also operate when molecules are brought too close. It has been estimated 
lKntioned in Set. 3.8.1 are dve 

that the interaction energy due to repulsion (V,,,) is inversely proportional to twelfth power ,, 
of r. 

1 
i.e., V,,, cc y 

r 

The sum of attractive and repulsive energies, is the total interaction energy (V,). 

Vt = Vfir + Vfid + Vdls + Vrep ... (3.31) 

This equation can also be written as 

1 - 
P 9 I/----- ... (3.32) 
r" r6 

Where the first term in the right hand side stands for repulsive interaction ~ ~ ~ , ( + v e  sign); 
andthe second term for the sun?. of a!l attractive interactions, viz., Yfi,, Vrd and Vdls (--ve 
sign). The terms p and q are characteristic of the molecules under study. Eq. 3.32 implies 
that the molecules have attractive forces (proportional to r?) and repulsive forczs 
(proportio-a1 to r-I2). 

The effect of attractive and repulsive interactions on the energy of a system can be 
understood by a plot of V, against r (Fig. 3.11) drawn for methane molecules. By 
convention, the total interaction energy of the two methane molecules separated by infinite Attractwe forces cause decrease in 
distance (represented by the point A) is zero. When the two molecules are brought closer, ~nteractton energy Repuls~ve fcrca 
they begin to attract one another and there is decrease in the total interaction energy. This is reSUIt in Increase of interaction 

energy. 
indicated by the falling portion ABC of the curve. At C, the two molecules have the lowest 
energy. If the two molecules are brought still closer, repulsive forces overtake the attractive 
forces and the total interaction energy starts increasing. This is indicated by the rising 
portion CD of ttg curve. Note that the decrease in V, due to attractive forces (along ABC) 
is gradual but the increase in Vt due to repulsive forces (along CD) is very steep (Guess the 
reason!). 

D 
+ Repulsive 

region 

-2 - 
A- 

Fig. 3.11 : Total interaction energy as a functiur 
of intermolecular distance. 
/ 



Qat-s ul Matter 

The strength of hydrogen bonding is . . 
of the oider of 10-40 k9 mol-' 

3.8.3 Hydrogen Bonding 
There are several specific types of interactions encountered between various types of 
molecules. Of these. metallic bonding and hydrogen bonding are very significant. We shall 
study metallic bonding in Unit 5.,Here let us study hydrogen bonding in detail. When a 
hydrogen atom is covaiently bonded to a strongly electronegative atom, such as oxygen, 

.fluorine or nitrogen, the bond is much polar. Such a hyaogen atom would still possess 
large affinity for nonbonding electrons prksent on other oxygen, nitrogen or fluorine atom. 
The latter atom could be a part of the same molecule or a neighbouring molecule. The 
strong interaction that results is called a hydrogen bond. It is a special type of dipole-dipole 
attraction. In water. for example, hydrogen bonding arises between hydrogen atom (positive 
end of the dipole) of one wzter molecule and the oxygen atom (negative end of the dipole) 
of the otber.(Fig. 3.12a). Hydrogen fluoride is another molecule having hydroken bonding 
(Fig. 3.12b). 

Fig. 3.12 :&iydrogen bonding : (a) in water (b) in hydrogen fluoride. 

Hydrogen bonding is strong in Hp, Hz0 and NH3 as compared to many hidrides due to the 
higher electronegativity of fluorine, oxygen and nitrogen. Strong hydrogen bonding in these 
compounds results in enhanced attractive interactions between the molecules. 

Let us study the effect of the above interactions on' the physical properties of the 
compounds. 

3.8.4 Effect of Molecular Interactions on Physical Properties 
rntermolecular forces have significant effect on the physical properties such as melting 
point, boiling point, solubility, surface tension, viscosity, density and so on. Some of these 
aspects will be studied in Unit 4. But here we consider the effect of intermolecular forces on 
melting and boiling points only, since these two concern change of state. 

i) Polar molecules have h'igher melting and'boiling points than the nonpolar molecules of 
similar molecular size. I t ls  so since in the polar molecules, in addition to London 
forces, dipolar interactions are also present. In general, larger the dipole moment, the 
higher the melting and boiling points. See some illustrative data in Table 3.2. 

Table 3.2 : Effwt of Dipole-Dipde Interaction on Melting and Boiling Points 

In Unit 6 of Atoms and Molecules 
course, you have studied that the 
unit of dipole moment is C m. 

Compound Relative moiecular mass Dipole moment/ Melting point/K Boiling point/# 
lo-" C m 

ii) Among the noble gases, the bailing point increases with atomic number (Table 3.3). As 
explained earlier, the London forces are more in large atoms due to higher 
polarisability. 



iii) Among a series of similar nonpolar molecuies such as hydrocarbons, boiling point 
increases with the molecular size (Table 3.3). Again, the reason is that a.larger 
molecule has higher pqlarisability and increased London forces. 

iv) Among the hydrides of 15, 16 and 17 group elements'in the periodic table, those 
having the highest boiling points are NHp, H z 0  and HF, respectively. This is due to the 
strong hydro4en bonding in these three compounds. 

Table 3.3 : Effect of London Forces oa the Bolting Points 

Noble gas Atonk number Boiling point/K 
He 2 4. I 

Compound Relative molecular .mass Boiling point/K 

C.HIO (Butane) 58 272.4 

v) There is 5 striking contrasrin the boiling points of the isomeric compounds, ethanol 
(351 K) and dimethyl ether (249 K). The hydrogen bonding between the molecules of 
ethanol (Fig. 3.13) contributes to a much higher boiling point. On the other hand, the 
molecules of dimethyl ether are held together only by, weaker dipole-dipole interaction 
(Fig. 3.14) 

Fig. 3.13 : Hydrogen bonding in ethanol. Fig. 3.14 : Dipok-dipore 
I interaction in dimethyl ether. 

vi) London forces'also depend on the molecular geometry, For example, among the 
isomeric hydrocarbons, straight chain isomer has higher boiling point than the 

1 branched chain isomer. Let us illustrate this with a specific example. The straight chain 

I isomer, butane, boils at 272.4 K whereas the branched chain isomer, 2-methylpropane, 

I boils at 263 K. The molecules of 2-methylpropane are n:atly spherical whereas those 
of butane are distorted rod-like (Fig. 3.15a and b). 

I 

Real Gases and their Liquefaction 

Relative molecular m a s  is more 
commonly known as molecular 
weight. 

(a) . 
Fig. 3.15 : (a) Interactions among nearly spherical molecules of 2-methylpropane 

I (b) Interactions among distorted rod-like molecules of butane. 



Sores of Matter Hence, the molecules of butane have a larger surtace area for interaction with each other than 
those of 2-methy]propane. The stronger interactions in butane are reflected in its higher boiling 

For a given volume, a sphere has the mint. 
smzilest sorface area as compared to 
otile; g:anretncal shapes. Care must be exercised in comparing the physical properties of molecules differing sharply 

in more than one way, viz., relative molecular mass, polarity and geometrical shape, Based 
on the principles developed above, answer the following SAQ. 

SAQ 6 
The nltBltmg pornls .>f ( 7 i 2  Er- and 1. z re  172 K,  366 K and 386 K Explain phi< ~ariatitrn. 

3.9 SUMMARY 

In this unit, we have discussed the behaviour of real gases. Their deviation from ideal gas 
behaviour has been explained in terms of intermolecular forces. van der Waals equation has 
been derived and used in explaining the deviation from ideal gas behaviour. The necessary 
conditions for liquefaction of gases have been discussed. The critical constants have been 
defined. Their relationships with van der Waals parameters have been established.The 
principle of corresponding states has been stated and explained. The methods for 
liquefaction of gases are outlined. The nature of intermolecular forces, their types and their 
effect on physical properties gf substances are discussed. 

3.10 TERMINAL QUESTIONS 

1. Using the van der Waals parameters of nitrogen given in Table 3.1, estimate its critical 
constants and compare with the actual values given in Table 3.1. 

2. What is the pressure change if two moles of steam at 5.000 X 10' K occupying 0.0300 
m3 of volume is heated upto 1.000 X lo3 K at constant volume. Assume that steam 
behaves as a van der Waals gas. 
a = 0.5536 pa.m6 m01-~ and 
b = 3.043 X lo-' m3 mol-' 

3. Which of the substances listed in Table 3.1 can be liquefied at 298 K? 

4. State the principle of corresponding states in as many ways as you can. 

5. Why is the liquefaction of gases easier at low temperatures and high pressures? 

6. Ethanol has higher boiling point than butane although the latter has higher relative 
molecular mass. Explain. 

7. A vessel of 1.000 X m3 volume contains 0.0180 kg of argon at 300.0 K. Calculate 
i: pressure using ideal gas and van der Waals equations. Ua'*Pable 3.1. 

8. Calculate the reduced pressure and reduced temperature for oxygengas at 273.2 K and 
1.013 X lo5 Pa. use Table 3.1. 

&If Assessment Questions 

1.  As a van der Waals gas : ' 

's 
e 

nRT n2a 
p = - - - - - -  V - n,b vZ 

-/ 

= 9.898 X lo4 Pa C-d- 

As an ideal gas : 
p = 9.317 X lo4 Pa. Thus, the values of pressure calculated from van der Waals 
equatidn and ideal gas equation are slightly different. 



2. The indane gas iq in the liquid state inside the cylinder; hence, the critical temperatures Real Gases and their Liquefaction* 

of propane and butane must be higher than 298 K. (Their critical temperatures are 370 
and 425 K, respectively. 

3. Using p,, V, and Tc from Table 3.1, 
zc = 0.2892 
Substituting the expressions forp,, V, and Tc from Eqs. 3.20--3.22, in Eq. 3.23, 
z, = 0.375 
Hence, at the critical point, methane deviates from van der Waals equation. 

Substituting these quantities in Eq. 3.30, 8 is found to be equal to 1.371. 

5. The inversion temperature of hydrogen is much lower than room temperature. Hence, 
Joule-Thomson expansion at room temperature causes heating. 

6. The main intermolecular interactions in' cL, Bq dnd I 2  are London forces. Since the. 
polarisability and hence, London forces increases with relative molecular mass, the 
melting points are in that order. 

Terminal Questions 

1. Critical constant calculated as per Eqs. 3.20-3.22: 
V, = 1.174 X m3 mol-I 

pc = 3.400 X lo6 Pa 
T, = 128.2 K 

2. Using van der Waals equation, the pressure values at 5.000 X lo2 K and 1.000 X lo3 K 
are 2.752 X 10' Pa and 5.530 X lo5 Pa. The pressure change is 
(5:530 - 2.752) X lo5 Pa = 2.778 X lo5 Pa. 

3. COz, H20 and NH3 can be liquefied at 298 K since their critical temperatures are 
higher than 298 K. 

4. As given in Sec. 3.6. 

5. At sufficiently low temperatures, thermal motions are reduced, and do not disturb 
attractive forces between the molecules. Hence, the molecules are drawn together to 
form a liquid at low temperatures. Liquefaction is easier at high pressures when 
distences between molecules are smaller on the average and hence, the attractive 
interactions are higher. 

6. Apart from London forces, ethanol molecules have strong hydrogen bonding too. But 
in butane, only London forces are present. Because of stronger intermolecular forces, 
ethanol has higher boiling point than butane. 

7. According to van der Waals equation, pressure calculated is 2.440 X lo6 Pa, whereas 
as per ideal gas equation, it is 2.494 X 10-a. 
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In Unit 2, we discussed the characteristics of ideal gases. We assumed that there is no 
attractive or repulsive interaction between the individual molecules. In Unit 3, this 
treatment was modified to account for the behaviour of real gases'at low-temperatures and 
high pressures and to explain the liquefaction of gases. Finite size of the gaseous molecules 
and their weak interaction were recognised. In Unit 5, we are going to study the strong 
interactions in a solid crystal and the orderly arrangement of particles in it. In this unit, we 
will discuss the characteristics of liquids in contrast to those of gases and solids. Our aim is 
not to list the properties of liquids but to correlate these to the intermolecular interactions. 

We will describe the features of a model proposed for the structure of liquids. We shall 
explain the correlation between the intermolecular forces and the properties of liquids such 
as surface tension, viscosity, vapour pressure, boiling point and molar enthalpy of 
vaporization. Finally we will briefly study liquid crystals, their types and their applications. 

Objectives 
After studying this unit, you should be able to : 

explain the structure of liquids, 
state the significance of surface tension and viscosity of liquids, 
discuss the qualitative dependence of vapour pressure, boiling point and molar enthalpy 

: of vaporization of liquids on the molecular interactions, 
state and explain Trouton's rule, and 
discuss the types of liquid crystals and their applications. 

4.2 COMPARISON OF LIQUIDS WITH GASES AND 
SOLIDS 

We can obtain a liquid by heating a solid or by cooling a gas under certain conditions. 
Therefore, liquid state is in between solid and gaseous states. In a solid, the particles have 
only vibrational motion about their equilibrium positions. The strong intermolecular forces 
present in a solid crystal are responsible for the restricted motion of the particles and their 
orderly arrangement. 

As a result, a solid has a definite shape. In contrast to this, the molecules in a gas are free to 
move randomly and have a disorderly arrangement. The gases can expand or contract to 
conform to the volume of the vessel. Hence, the gases have no definite shape or volume. 
The characteristics of a liquid lie between the extremes of a gas and a solid. The particles in 
a liquid are free to move from one point to another. In this respect, it resembles a gas. The 
ability of a liquid to flow enables it to assume the shape of its container. Yet it never 
expands or contracts to fill the container and thus resembles a solid. Let usmow examine 
the structural aspects of liquids. 



'4;3 STRU.CTURE OF LIOUIDS 
Liquids 

The particles in a liquid are not as much orderly as in a solid; also not as much disorderly as 
in a gas. To establish this, we cite the following three pieces of evidence : 

Volume Change During Fusion and Vaporization 
A pure solid melts to give a liquid at a sharp'temperature. This process is called fusion. It is 
generally seen that during fusion, volume increases by 10%. This implies that a substance Water and a few other substances 
retains its orderliness to a considerable extent during fusion. On the contrary, in the ?re exceptional in having a lower 
conversion of a liquid into vapour at its boiling point (known as vaporiiation), the volume volume per unit mass (and highey 

increases 100-1000 fold. This large increase in volume during vaporization indicates that density) in liquid state than in solid 
state. We shall discuss this aspect in 

the particles are changed into a more disorganised state. the unit on phase equilibria. 

Molar Enthalpies of Fusion and Vaporization The state of a substance under g i m  
The amount of heat required at constant pressure to convert one mole of a solid into liquid temperature and pressure is decided 
at its melting point is called molar enthalpv of fusion (A@,.). Similarlv. the amount of heat by the forces 

m - . r 
required at &"stant pressure to convert one mole of ;liquidinto its vapour at its boiling 
point is called the molar enthalpy of vaporization (@v.p). The values of A@,,, and 
boiling points (BP) are given in Table 4.1 for some substances. It is seen that A&., is larger 
than A@,,, for all the substances. It requirks more heat to convert a liquid into vapour than 
to convert a solid into a liquid. It seems'reasonable to assume that a large heat absorption 
during change of state is associated with inorease in disorder. On this assumption, we can 
think that a liquid has considerable measure of orderly arrangement as compared to a gas. 

operating in a substance. Fusion, 
vaporizatio~ etc. are dependent upaa 
the external forces (such as pressun) 
applied on a substance. 

Heat absorbed by a substance at 
constant pressure at its melting or 
boiling point is used, not to increw 
the temperature but to increase its 
disorderliness. In the language of 

fable 4.1 : Molar Enthalpks of Fusion (m-) t a d  Va~*fion ( w - I  m b g  Poinis (BP) of the thermodynamia, such heat 
Substnnces absorption during change of strte 

increases the entropy ofthe 
Substance &JW mol-' A&& mol-' BP/K substance. We shall discuss this in . 

Unit 8. Some correlations regarding 
Methane 1 .O 8.2 111.5 AH0.., are given in Secs. 4.5 and 4.6. 

Etbane 2.9 14.5 184.4 

Diethyl ether 7.6 26.9 308 

Ethanol 5.1 39.1 35 1 

Water 6.1 40.7 373 

Benzene 10.1 31.1 353 

Mercury 2.5 59.2 630 

Silver 12.2 259 2430 

Aluminium 10.9 292 2720 

X-Ray Diffraction by Liquids 
In the next unit, we shall study that the X-ray diffraction by a solid crystal gives rise to sharp X-ray diffraction is the scattering o[ 
diffraction pattern. The sharpness of diffraction pattern is an indication of the orderly X-rays from a regular array of 

arrangement of atoms or ions in the crystal lattice. Gases, on the other hand, do not give atoms, molecules or ions, 

rise to diffraction lines with X-rays. This is again due to the random arrangement and 
movement of molecules in a gas. Liquids do give diffraction patteras with X-rays, although 
the lines are diffuse (i.e., not quite sharp). The diffuse diffraction pattern makes it clear that Voids 

the order in the arrangement of particles is o ~ l y  partial but not total. Experimental data 
indicate that the first few neighbours.of Cparticle in a liquid are at fairly well-defined 
distances; the neighbours farther away are randomly distributed. This means that the 
arrangement of particles in a liquid exhibits short range order and long-range disorder. The 
number of nearest neighbours around the particles in different regions of a liquid is not the 
same. A rnodel fof the structure of liquids is shown in Fig. 4: 1. 

The main aspects of this model are summarised below : 
The particles in a liquid are fairly close. 
These particles have higher kinetic energy (and hence, speed) compared to those in a E tg. J. I : I\ niodcl for the 

solid. structure of liquid, 
Because of their speed, the individual particles occupy more space, and a liquid is less 
dense than the corresponding solid. 
To explain the relativedensities of liquids and solids, it is further assumed that there are 
some voids between the.molecules. 



States 08 Matter 

In a gravity-free environment, as in 
the space shuttle in the orbit, the 
shape ol  liquid drop is governed by 
surface tension alone. If gravitational 
forces were to he absent on earth, 
the flat surface of water bodies like 
rives and oceans would appear as 
an array of spherical drops. 

Fig. 4.2 : Mdecules in the hulk 
and on the surface of liquid k i ~ g  
attracted by neighbours. 

The values of surface tension given 
in Table 4.2 are obtained when the 
liquids are in contact with the11 
vapours and air. 
If measurement is made in presence 
of some other gas instead of air, the , 
va!ues will be different. 

These voids enable the liquid to flow. 
Particle close. to one of the voids behaves like a particle in a gas. 
Based on the above, answer the following SAQ. 

SAQ 1 
Liquids are less compressible than gases. State the reason. 

...... ....................... ................................................. "..........................................................,........ 

4.4 SURFACE TENSION AND VISCOSITY 

Having discussed the structure of liquids, we now take up the study of the properties of 
liquids. Three of the characteristic properties of liquids are : 

Possession of a sharply defined surface 
Ability to flow 
'I'eladency to vaporiz.: into space above the surface and to exert vapour pressure. 

These properties are related to the strength 'of intermolecular forces in liquids. We now 
discuss surface tension and viscosity of liquids. 

Surface Tension 
The presence of a surface in a liquid gives rise to the phenomel~on of surface tension. Let's 
see how it arises. In the absence of external forces, liquids form spherical drops 
spontaneously. This is facilitated by the fact that for a given iolurne, a sphere has a smaller 
surface area than any other shape. This fascinating phenomenon is one of the reasons for the 
spherical shape of earth, sun, moon, etc. Let us explain the origin of forca operating b 
minirnise surface area. 

A molecule in the interior of a liquid is attracted by all the mo!ecules surrounding it. It is 
pulled equally in all directions. But a mol$cule at the surface of a liquid is attracted only by 
~fiolecules below it (Fig. 4.2). 

Therefore, the molecules cn the surface of the liquid are drawn inwards trying to minimise 
the surface area. Because of this tendency of a surface to contract, each point on the surface 
of the liquid is under pressure like a stretched rubber membrane. The resistance of a liquid 
to increase its surface area is correlated to its surface tension. It is defined as the encrgy 
required to increase the surface area by one unit by moving the molecules from the Interior 
of the liquid to the surface. It is also defined as the force per unit length perpeadicuiar to a 
liquid surface. Corresponding to these two definitions, S? units of surface tension are 9 m ' 
and N m-' (which are, of course, equivalent). It is represented by the Greek letter -y. 

Increase of temperature.lncreases the thermal motion of the molecriles in a liquid; this 
opposes the effect of intermolecular forces. Thus as temperdture is raised,'the sorface tension 
decreases. 

The values of surface tension of some liquids are given in Table 4.2. 

Table 4.2 : Values of Surface Tension ( y )  of Some Liquids at 293 K 

Water 7.28 

Benzene 2.89 

Carbon tetrachloride 

Chloroform 

Mercury 

Some of the factors which influence :he magnitude of surface tension are given below: 
Molecules having strong hydrogen bonds havg high surface tension. The surface tension 
of water, for example, is about three limes higher than that of nonpolar liquids like 
carbon tetrachloride. 



@ Metallic bond~ng also leads to high surface tension. For example, the surface tension of 
mercury is more than six times that of water. 
The dispersion forces are quite significant in molecules with large atoms and are often 
more important thaptdipoledipole forces. In fact, surface tension of carbon 
tetrachloride is only slightly less than that of chloroform; the effect of London forces in 
the former is nearly equal to the combined effect of London and dipoledipole forces in 
the latter. 

Intermolecular forces give rise to capillary action. It is the rise of liquids through a 
capillary (narrow glass) tube (Fig. 4.3a). Two types of forces-cohesive and adhesive-are 
responsible for this property. The cohesive forces are the intermolecular forces among the' 
molecules of a liquid as discussed in Unit 3. Adhesive forces exist between the liquid 
molecules and the molecules in the capillary walls. For example, glass contains many 
oxygen atoms; each oxygen atom (with partial negative charge) attracts (the positive end of) 

-a polar molecule, such as water. 

The adhesive forces enable water to "wet" the glass. The adhesive forces acting upward pull 
up a water column inside a capillary tube when the latter is in contact with water. The 
height of the water column inside the capillary tube is such that the adhesive forces acting 
upwards balance the cohesive forces (in the form of weight of water column) acting 
downwards. The height of the water column inside the capillary tube has been found to be 
inversely proportional to the radius of the tube. Hence only in tubes of small radius, the 
capillary rise is meaningful. 

The concave shape of the meniscus of water in a glass tube indicates that the adhesive 
forces of water towards the glass are stronger than its cohesive forces. A metallic liquid such 
as mercury (Fig. 4.3b) shows a lower level in a capillary tube and a convex meniscus. This 
behaviour is characteristic of a liquid in which the cohesive f o m s  between its molecules are 
stronger than the adhesive forces between the molecules and glass. . 

- 
Fig. 43 (a) : A pOQr lhpdd such as wster rises m a rPpiOnry lube-water has concave meniscus m a glass tube 
Cb) : A metalk liquid slrb ab mercury shows a dopgsbn of level-mercury has m v e x  Iwrriseus. 

Viscosity 
Another property of liquid that depends on intermolecular forces is viscosity; it is a 
measure of the resistance to flow. A liquid which has higher viscosity, flows slowly. It is 
represented by the Greek letter q (eta). Its unit is Pa s. It decreases with temperature. The 
viscosities of a few liquids are given in Table 4.3. 

Table 4:3 : Viscosity (7) of sora liquids at 298 K 

Liquid ?/Pa s 

Water 8.90 X 10.' ' 

Benzene 6.0 X 10.' 

Glycerol 0.945 

Liquids with larger intermolecular forces flow slowly and are called viscous liquids. 
Hydiogen bonding is particillarly important in this respect because it can bind neighbouring 

Cohesion is due to attraction 
between molecules of one or more 
liquids, while adhesion is attiactia 
between the molecul& of a liquid 
and the molecqles in the wall of t b  
capillary. 

The phenomecon of surface tension 
is important for understanding 
chromatography, colloids, catalysis, 
detergent action of soaps, etc. 

Some of the familiar instances of 
capillary action are : 
@ ' ~ovemen t  of water through the 

soil. 
@ .Rise d nutrient dissolved water 

fiom the,roou to the tree top. 
Penetration of wakr into cernenk 
structure. 

Glycerol 



molecules together much strongly. This accounts for the fact that water has higher viscosity 
than benzene and chloroform, which have no hydrogen bonding. Glycerol has very high 
viscosity, mainly due to numerous hydrogen bonds it can form. 

Molecular arrangement also could cause high viscosity: Heavy h y d r k r b o n  oils and grease 
are not hydrogen bonded but are highly viscous. Their viscosity arises partly f ron.hndon 
forces between molecules and partly because the long chainlike molecules become 
entangled with each other (Fig. 4.4) like cooked noodles served in a plate. 

Fig, 4.4 : fhr  molrctllrs in the heavy 
hydrucarl,on oil entangled togettner. 

Use the above discussion on surface tension and viscosity to answer the following SAQ s. 

SAQ 2 
For water-proof coating of wood, paraffin wax is used. Explain the reason. 
[Hint : Paraffin wax is a mixture of solid hydrocarbons] 

SAQ 3 
Among the alkanes--octane (CeHls) nonme (CPH~O) and decane (Cl~H2z)--which is 
expected to have the highest viscosity? 

The escape of molecules from the liquid surface to form the vapour is called the 
vaporization or evaporation. To have an understanding of this process, we must know how 
vapour pressure, boiling point and molar enthalpy of vaporization are connected arnong 
themselves and also to the intermolecular forces. 

4.5.1 Vapour Pressure 

The molecules in a liquid move constantly. During this motibn, the molecules with 
sufficient kinetic energy can jump out into the space above the liquid as vapour. If the 
liquid is kept in an open vessel, the molecules escape into the atmosphere and the liquid 
keeps on evaporating. However, if the liquid is kept in a closed vessel, the number of 
molecules in the vapour state increases at first (Fig. 4.5 a). They also start returning to the 
liquid surface which is called condensation. The condensation rate keeps on changing till it 
is equal to the rate of vaporization and the spact: above the liquid is saturated with vapour 
(Fig. 4.5 b). The pressure exerted by a vapour i n  contact with its liquid at a given 
temperature is called its vapour pressure. 

Vapour pressure of a liquid is commonly measured by introducing a liquid into a container; 
the container is closed and connected to a U-tube containing mercury (Fig. 4.6) 



Liquids 

Hg. 4.6 : V.pour pressure 

The difference in the heights of mercury columns ( h )  is measured in mm of Hg unrt. The vapour 
pressure in SI units can be calculited using the following equivalence statement : 
760 mm of Hg = 1 .013 X lo5 Pa 
(Recapitulate the unit conversions discussed in Sec. 1.6 of Unii 1). 

The vapour pressure of some liquids are given in Table 4.4. 

Table 4.4 : Vapour Pressures of Some Liquids at 298 K 

I Substance ~ a p o u r  pressurej~a I 
Mercury 0.227 

Water 3.17 X 10' 

Ethanol 7.85 X 10' 

Diethyl efher 5.90 X 10' 

Benzene 1.26 X 1 0 6  

From Table 4.4, it can be inferred that the liquids having strong intermolecular forces do not 
vaporize easily and their vapourpressures are low. Water, due to strong hydrogen bonding 
has lower vapour pressure than ethanol and, the latter has lower vapour pressure than 
diethyl ether. Metallic bonding signifies strong interaction among the atoms; as a result of 
this, mercury has low vapour pressure. 

As the temperature of a liquid increases, the average kinetic energy of the molecules also 
increases. The number of molecules escaping as vapour also increases. Hence, the vapour 
pressure increases with temperature. To illustrate this, the vapour pressures of water are 
given at different temperatures in Table 4.5. 

Table 4.5 : Vapour Pressures of Water at Different Temperatures 

~em~era ture / l (  Vapour pressure/Pa 
t 

There is a quantitat~ve relationship, known as Clausius-Clapeyron equation, between the 
vapour pressure of a liquid and its temperature. We will discuss this in Unit'9. Let us now 
define the boiling point of a liquid. 

4.5.2 Boiling Point 
I 

The addition of a nonvolatile sol- 
to a solvent causes lowering of 
vapour pressure. This, and the 
related effects would be discussed ia 
the unit on coliigative properties. 

A molecule of water 1s capable of 
forming four hydrogen bonds; two 
with the (two lone pairs of) oxygen 
atom and two with two hydrogen 
atoms. A molecule of ethanol can 
form only three hydrogen bonds, 
two with oxygen atom and one with 
hydrogen atom. Water has stronger 
hydrogen bonding than ethanol. 

The temperature at which the vapour pressure of a liquid equnls the external pressure is 
called its boiling At this temperature. the vapour produced in the interior of the 



Distillation is a procedure to 
separate pure substances from a 
solution using vaporization and 
condsnsation. 

Water has many abnormal but 
userul characteristics. Most 
strikingly, its large enthalpy of 
vaporization enables water to 
function as an effective coolant for 
our planet as well a for our body. 
Interestingly, the surface of the earth 
and human body have both around 
70% water content. 

liquid results in continuous bubble fornation that is characteristic of boiling. The 
temperature of a boiling liquid (even with the absorption of heat) remains constant until1 all 
the liquid has been vaporized. 

The boiling point of a liquidat 1.013 X 10' Pa (1 atm) pressure is called its nurmal boiling 
point. The boiling points mentioned in this course are normal boiling points. A less volatile 
liquid (i t . ,  a liquid whlch has low vapour pressure at room temperature) is to be heated to 
a higher temperature so that its vapour pressure equals atmospheric pressure. That is a less 
volatile liquid has a high boiling point. On the contrary, a more volatile liquid (i.e., a 
liquid havi ng high vapour pressure at room temperature) needs to be heated less to make it 
attain atmospheric pressure and it h s  a low boiling point. A glance at the boiling points 
(Table 4.1) and vapour pressure (Table 4.4) of water and diethyl ether indicates that water 
is less volatile and has higher boiling point; whereas diethyl ether is more volatile and has a 
lower boiling point. 

Let us pow study the effect of external pressure on boiling point. The boiling point increases 
as external pressure increases and the boiling point decreases as external pressure decreases. 
This principle is made use of in distillation under reduced pressure (Fig. 4.7). It means 
making a liquid boil at a pressure lowet than atmospheric pressure. If a liquid has a high 
boiling point and decomposes when heated, it can be made to boil at a lower temperature 
by reducing the prezsare. For reducing the pressure, a vacuum suction pump is used. 

, Thermometer Water out 

vacuum pump 

liquid 

Fig. 4.7 : Reducel pressure distillation. 

Distillation under reduced pressure is often used in the separation and purification-of 
organic and inorganic compounds. A commercial application is !hat excess water content is 
removed from many food products by boiling under reduced pressure. An alternate way of 
looking at Table 4.5 is that it gives boiling points of water at different external pressures. 
Thus, at a reduced pressure of 1.226 X 10' Pa (0.0121 atm), water boils at 283 K; the 
boiling point of water is lowered by 90 K at this pressure. 

In Unit 3, we learnt about the correlation between boiling points and intermolecular forces. 
It is interesting to note that intermolecular forces have similar effect on the boiling points 
and the molar enthalyies of vaporization, if comparisons are restricted to similar 
compounds. Let us examine Table 4.1 from this angle. Water has stronger hydrogen 
bonding than ethanol; the boiling point and molar enthalpy of vaporization of water are 
more than those of ethanol. Increasing intensity of London forces increases the boiling point 
and molar enthalpy of vaporization among the alkanes. Effect of metallic bond~ng is clearly 
seen in the high values of boiling points and molar enthalpies of vaporization of mercury, 
silver and aluminium. 

,The parallel between the molar enthalpies of vaporization and the boiling points of liquids 
led Trouton to suggest a relationship between the two quantities, Before studying T- I G U ~ ' S  
rule, organise your thoughts by answering the following SAQF. 

-. 



SAQ 4 
The vapour pressure of methanol is higher than that of ethanol at 300 K.lSuggest a reason. 

' 

Liquids 

SAQ 5 n 
Arrange the following compounds in the imeasing order of bpiling points: 

Methanol 
~thanol,' glycerol and ethylene glycol. 
................................................................................................................................................... 

Ethykac glycol 

4.6 TROWTON'S RULE 

Trouton's rule can be stated as follows: 

The ratio of molar enthalpy of vaporization of a liquid to its boiling point is approximately 
85 J mol-' K- . 

Trouton's rule holds good for liquids in which hydrogen bonding is absent. The ratio, 
&,.,/BP is also known as entropy of vaporization. It is a measure of disorderliness A hydrogen bonded liquid is more 
gained by a substance due to vaporization. During vaporization, a hydrogen bonded liquid orderly in its molecular arrangemeot 

'gains more disorderliness as compared to a nonhydrogen bonded liquid; hence AHoVa,/BP than a nonhydrogen bonded liquid 

is more than 85 J mol-' K-' for hydrogen bonded liquids. For example, the values of During vaporization, the increase in 
disorderliness is more in a hydrogen &,,,/BP for water and ethyl alcohol are 109 and 1 12 J mol-' K-', respectively. bonded liauid than in a 
nonhydrogen bonded liquid. 

For nonpolar liquids, Eq. 4.1 is useful in calculating the boiling point or molar enthalpy of 
vaporization, if either is known. Let us calculate the molar enthalpy of vaporization of 
benzene; its boiling point is 353 K. Using Eq. 4.1. 

Ma, = 353 K X 85 J mol-' K-' 
= 30 kJ mol-' 

The experimental value as given in Table 4.1 is 31.1 kJ mol-'. 

So far, we have studied the characteristics of liquids. There is a class of compounds, known as 
liquid ciystals, which flow like liquids and have structural similarity to solids. We take up 
the study of liquid crystals in the next section; before going throwh the next section, it is 
better you try the following SAQ. 

SAQ 6 
Celculate the molar enthalpy of vaporization of carbon tetrachloride which boils at 3350 K. 
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4 .7LIQUID CRYSTALS 

Gases and liquids are isotropic. This means for any gas or liquid, the value of any of the 
physical properties such as refractive index, coefficient of thermal expansion, electrical 
conductivity, speed of sound etc., is same in all directions. In contrast to this, a crystalline 
solid when examined as an individual crystal (or a single crystal) behaves in a different way. 
Depending upon the direction in which the crystal is kept during measurement, it may have 
a different value for its physical properties mentioned above. Such a single crystal is 
anisotropic. In some cases different faces of a'crystal may shoGdifferent catalytic activity. 
Another class of compounds which are anisotropic are liquid crystals. Let us first define the 
term 'liquid crystal' and then see how its anisotropy gives rise to interesting applications. 

Some organic compounds often have two melting points. On heating such a crystal, it melts 
into s turbid liquid at a definite temperature; and on heating further, the turbid liquid 
becomes clear s t  another temperature. The turbid liquid is called 'liquid crystal'. 

A number of compounds of the following type exist as liquid crystals : 

A 8 - - - O C  ; A, B and C are substituents or carbon chains. - 
An examp1e.i~ p-azoxyanisole. 

e c o e ~ = ~  - + 
0 

p-~zoxyanisole 

These molecules have a length which is larger than breadth. In general, the arrangement of 
molecules in liquid crystab resembles a pile of cigars. Depending upon the structural pattern 
of molecules, liquid crystals can be classified as follows: 

Smectic liquid crystals have molecules arranged in parallel layers or planes. These planes 
are at equal distances. The molecules in all the planes point to the same direction. That is, 
the molecules have same orientation. The only difference between a solid crystal (Fig. 4.8a) 
and a smectic liquid crystal (Fig. 4.8b) is that in the former, the particles are arranged at 
regular intervals within a plane; whereas in the latter it is not so. 

-- 

(a) (b) (4 (4 (e) 
Arrangement in equidistant Same orientation! Same orimtation; absence Multipk layers with succwive Neither orientation nor 
planes; regularity within arrangement in equidistant dphwurmg~nenl- twist; m e  orientation within a planar arrangement-bquid 
planes-a singie crystal. planes; no regularity within nematic lquid crystal hyer-chdesterie lqd crystal (giving rise to isotropy\ 

planes-smctic liquid crystal 

Fig. 4.8 : Strutture of a single crystal, liquid crystals and liquid. 

The optical (opaque or transparent) Nematic iiquid crystals have all the molecules with the same orientation (Fig. 4 .8~) .  Unlike 
nature of a nematic liquid crystal in smectic type, the molecules are not arranged in planes in nematic liquid crystals. 
depends on the way the mo'ecu'es Application of an electric field causes a change in the orientation of the molecules in a 
are oriented. 

nematic liquid crystal. A change in molecuiar orientation, causes a change in optical 
properties. It is this anisotropic character that makes a nematic liquid crystal useful in LCD 
(liquid crystal display) watches and calculators. 

Cholesteric liquid crystals have a multiple layer structure, but each suc~ss ive  layer  is^ 
inclined or twisted slightly. Fig. 4.8d illustrates the cholesteric liquid crystal structure. For 
comparison, the typical disorderly arrangement of molecules (accounting for isotropy) in a 
liquid is shown in Fig. 4.8e. 

The successive twist in structure makes the cholesteric liquid crystals coloured. A minute 
58 change in temperature ca-uses a change in the amount of twisting. It results in reflection of 



different wavelength of visible light; that is, the colour changes with temperature. This Liquids 
anisotropic nature facilitates cholesteric liquid crystals being used in thermometers and in 
devices for indicating the temperature of the skin or of electrical devices. Temperature The cdour of a cholesteric liquid 
changes as small as 0.001 K can be detected using sensitive cholesteric liquid crystals. This crystal changes with the change in 

class of liquid crystals received their name from the fact that many derivatives of cholesterol twist-pattern layers in its 

pertain to this type. structure. 

Cholesterol 

We see that a difference in the orientation of molecules in a nematic or a cholesteric liquid 
crystal causes a difference in its optical properties, thereby pointing to its anisotropic nature. 
On the basis of what you have studied so far, answer the following SAQ. 

SAQ 7 
In what way, an isotropic substance is different from an anisotropic substance? 

4.8 SUMMARY 

In this unit we studied the characteristics of liquids. The model proposed for the structure of 
liquid was discussed. Surface tension and viscosity of liquids were explained and the 
dependence of these characteristics on intermolecular forces was brought out. We discussed 
the properties of liquids such as vapour pressure, molar enthalpy of vaporization and boiling 
point. Trouton's rule was stated and explained. The terms isotropy and anisotropy were 
defined. The applications of anisotropic character of liquid crystals were illustrated. 

4.9 TERMINAL QUESTIONS 

(1) Comment on the fact that the densities of solid, liquid and gaseous nitrogen are 1.026, 
0.8081 and 1.251 X kg dm?, respectively. 

(2) In a polythene tube, water meniscus is convex. Explain. 

(3) Explain the reason for the anisotropy in the optical properties of nematic and 
cholesteric liquid crystals. 

(4) Molar enthalpies of vaporization of benzene and naphthalene are 31.1 and 44 kJ mol-'. 
Explain. 

(5) At room temperature, among water, methyl cyanide and methanol, which is expected 
to have the highest surface tension? State the reason. 

'(6) Why the viscosity of water at 373 K is one-sixth of its viscosity at 273 K? 

(7) The molar enthalpy of vaporization.and boiling point of ammonia are 23.3 kJ mol-' 
and 240 K, respectively. Does it obey Trouton's rule? 

I 
H-C-C S N  

Methyl cyanide 



4.10 ANSWERS 

Self Assessment Questions 

(1) Gases have more free space than liquids; hence, it is easier for gases to be compressed 
or expanded. 

(2) The cohesive forces between the molecules of water are stronger than the adhesive 
forces between water molecules and the hydrocarbon molecules in wax. Hence water 
does not "wet" the,surface of wax. 

(3) Decane is expected to have the highest viscosity due to increased London forces with 
chain length. 

(4) Although methanol and ethanol are hydrogen bonded, the latter has higher London 
forces due to higher qolar mass. The larger intermolecular forces in ethanol account 
for its lower vapour pressure than that of methanol. 

(5) The boiling points increase in the following order due to increasing hydrogen bond 
strength and London forces; 

Ethanol < ethylene glycol < glycerol 

(7) In an isotropic substance, the molecular arrangement is disorderly; the value for any 
physical property is same, irrespective of direction. In an anisotropic substance, the 
molecular arrangement is orderly and the values of some physical properties depend 
on the direction. 

Terminal Questions 

(1) The free space is the highest in gas, less in liquid and the least in a solid. 

(2) The adhesive forces between water and the hydrocarbon molecules in polythene are 
weaker than the cohesive forces between water molecules. 

(3) In nematic and cholesteric liquid crystals, there is some orderliness in the arrangement 
of molecules. The optical characteristics depend on a particular mode of arrangement 
of molecules. Any disturbawe in the form of temperature o i  electricity, affects the 
arrangement pattern in the liquid crystal and causes a change in its optical 
characteristics. 

(4) Naphthalene has higher molar mass than benzene and hence, has greater London 
forces; this is reflected in its higher M',',, value. 

(5) Due to strong hydrogen bonding, water must have the highest surface tension among 
the three liquids. 

(6) With temperature increase, the number of voids increases. The molecules can move 
easily leading to an increase in the flow rate; the viscosity decreases. 

(7) The value of AH:,, /BP = 97.1 J mol-' K-' for ammonia; it,doesn7t obey Trouton's 
rule due to hydrogen bonding. 
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5.1 INTRODUCTION 

In the earlier units,, we had drawn a comparison amongst the three states of matter-solid, 
liquid and.gas. These states of matter were described in terms of a few physical'properties 
like "solids are denser than liquids and gases" or "it takes enormous pressure to compress a 
solid even by a fraction of its volume", etc. However, instead of defining the states of matter 
in terms of the physical properties, it is much more useful to think in terms of the binding 
forces (ionic, covalent, van der Waals, etc.,) involved in a particular state imparting 
different properties to solids, liquids and gases. Thus, solid state could be defined as a state 
of a substance in which the neighbouring particles (molecules, atoms or ions) are close 
enough for van der Waals forces to operate. As a consequence, the motion of the molecules 
is restricted with respect to its neighbours. 

The solids can be of two types - crystalline and amorphous. Let us explain what a 
crystalline solid is. Those solids which are formed due to regulal repetition of identical 
building blocks are called crystals. It is like having a collection of identical bricks which 
could be arranged in some regular fashion to construct a wall. On the other hand, theie are 
solids which do not appear to have any regular internal arrangemeqt in every part and thus 
do not show regular shape; these are called amorphous solids. Amorphous solid means a 
solid without regular form. Glass, polyethylene as in plastic bags, etc., are common 
examples of amorphous substances. Though the study of amorphous substances is also quite 
useful and interesting, we shall confine ourselves to the study of the crystalline solids in this 
unit. 

Different crystalline structures are associated with different physical properties. Hence, we 
discuss crystal forms and crystal structure determination method in this unit. Further, the 
theories'of metallic bonding and semiconductors are also explained with particular reference 
to electrical conduction. The information obtained from crystal structure studies could help us 
in understanding the physical and chemical properties of solids. 



Objectives 

After studying this unit, you should be able to: 
define lattice, basis, unit cell, primitive and nonprimitve cells, 
describe the seven crystal systems and the fourteen Bravais latt~ces, 
identify the face, corner, edge, face-centre and body-centre in a cube, 
state the crystal planes in terms of Miller indices, 

r 

state Bragg law, 
describe the determination of crystal structure by X-ray diffraction method, 
determine the type of unit cell based on experimental and calculated values of density, 
explain the types of bonds in solids, 
discuss the structures of some ionic, covalent and metallic crystals, and, 
describe the types of semiconductors. 

5.2 DEFINITION OF TERMS USED IN CRYSTAL 
SYSTEMS 

Atom is In general =;lse tn this We h&e already seen that a crystal is defined in terms of a regular and repetitive 
unit; it stands for an atom or an Ion arrangement of particles (atoms/molecules/ions) in space. In order to pndefstaad crystak 
or a molecule. and their structures, we encounter a few new terms. These terms form akind of 

' 

crystallographic language. Let us now look at the definitions of some of these terms. 

5.2.1 Lattice 
Lattice is defined as an arrangement of geometrical points in a definite pattern in space 

A parallel net-like arrangement of 
points in space is known as lattice. (Fig. 5.la). It resembles a scaffold (a framework) erected for the construction of a building 

Putting it in a simpler way, one can define.a lattice as a regular periodic arrangement of 
. . points in space. 

Fig. 5.1 : Representation of a) lattice in two m) bsis (with two .toms), c) c r p !  stmetare. 
~wingtbebPGiSof1woatomsinrddootsYekepiO.  

5.2.2 Basis 
Whenever there 
around a lattice 
is defined. 

is a group of atoms When atoms tire attached regularly to each lattice point, it forms a crystal. However. instead 
pointl then the basis of an atom, we can have a group of atoms attached to each lattice point. The group is called 

a basis (Fig. 5. l b). The basis consists of the atoms, their spacings and internal bond angles. 
62 Every basis is identical in compositbn, arrangement and orientation. Fig. 5.lc shows the 



crystal structure where you can recognise the basis and imagine the lattice. For a large 
number of crystals, the basis has only a small number of atoms but in a few instances, the 
basis exceeds 1000 atoms. For example, the basis in iodine crystal is I 2  molecule whereas in 
the ice crystal, H i 0  molecule is the basis. 

Solid State 

5.2.3 Unit Cell 

The unit cell is the fundamental unit in a crystal. The repetitive arrangement of unit cells in Identical repetition of basis about 

three dimensions produces a crystal just as a wall is built from identical bricks. In other each 1at:ice point in three 

words, a unit cell is the smallest unit of a crystal which on translational displacement in dimensions gives a crystal structure. 

three dimensions will produce the crystal. A unit cell chosen to represent the crystal may be 
quite different in sizt and shape from another unit cell which may represent the crystal 
equally well. The main point is that whatever the unit cell may be, it should be the simplest 
representation and, when repeated in three dimensions, it should produce the crystal. 

Fig. S;t : Choice of unit cell. 

Fig. 5.2 shows four rows of spheres-represent~ng atoms-in a closely packed structure in 
two dimensions. If we join the centres or any other points, say, gaps between the spheres, of 
differont atoms in successive thr~c rows, we get a cell of the tjpe a, b or c. All the other 
rows of atoms are a repetition of the first three rows. It is immaterial whether the unit cell 
chosen is a, b or c, but it is the simplest representation which on repetition in two . - 
dimensions will produce the entire assembly as shown in Fig. 5.2. The si!uation.in a crystal 
is somewhat similar to the above except that the u n ~ t  cell and the resulting crystal are three 
dimensional. Thus, we can say that the simplest repeating unit in a crystal is called a unit 
cell 

It is true that the unit cell must have some regularity in stru~iure. Does any type ~f regular 
shape constitute a unit cell? The answer is no. To understand this, let us consider the. 
covering of a floor space by tiles without leaving a gap. Can we use any type of t~les- 

Fig. 5.3 : Of aU the reguk polygons, only triangles, squares and hexagons can fill a floor space without gap. 
F i - i n  space is deaoted by grey 63 



A parallelepiped is a three 
dimensiooal model of a 
parallelogram. 

The cell-edge lengths (a, b  and c) are 
the repeat distances in a unit cell. 
Any point in a unit cell can be 
represented by coordinates wh~ch are 
fractions of a, b  and c. 

triangular, square, pentagonal, hexagonal, heptagonal or octagonal? Agains the answer 1s no. 
You can cover the floor space completely with triangular, square or hexagonal tiles but not 
with pentagonal, heptagonal or octagonal tiles (Fig. 5.3). Note the gaps in the interior floor 
space when pentagonal, heptagonal or octagonal tiles are used. 

Jusc as tiles with specific shapes are useful in covering the floor space completely, unit cells 
with specific symmetry properties constitute the crystal lattice. The course on Spectroscopy 
deals with symmetry properties in detail. 

SAQ I 
What is the essential characteristic d a qnit cell? 

- - 

5.3 RRAVAIS LATTICES AND CRYSTAL SYSTEMS 

The basic shape of a rrnit cell is described by a parallelepiped. (Fig. 5.4a). 

A unit cell has three coordinate axes, a, b and c (note the bold letters). The cell-edge 
lengths in the threc axes are a, b and c (note the italicised letters), respectively (Fig. 5.4b). 
The angles between a and b axes, b and c axes and c and a axes are y,  a and P, 
respectively. The quantities a, b and c are called lattice parameters or unit cell parameters. 

Fig. 5.4 : a) parallelepiped; b) three coordinate axes, cell-edge lengths and the angles between axes. 

Based on the relationships among the axial angles and the edge-lengths, there are seven 
crystal systems as given in Table 5.1. 

Table 5.1 : The Seven Crystal Systems 

Systems Axes Angles Examples 

Cubic a = b = c  a = ~ = Y = 9 0 ~  NaCI, CsCl 

Tetragonal a = b #  c a = p = y = 9 0 0  Ti02 (rul~le) 

Orthorhomb~c a f b f c  a = p = y = 9 0 0  CdS04, HgBr? 

Rhombohedra1 a = b = c  o = S = y # 9 o 0  CaCOl (calcite) 

Hexagonal a = b # c  a  = b =  90'; y  = 120° SiOz 

MonGl~nic a f  b f c  a = y  = sdO; p f  90° KIOJ, NaHCO? 

Triclinic a f b f  c  a f  S f  Y NaHS04, CuF: 

5.3.1 Cubic System Geometry 

Of the seven crystal systems, we are particularly interested in cubic system due to its 
simplicity and symmetry. A cube has the same value for all the three lattice paramete? 
(a b = c). We must understand the geometry of a cube. For this purpose, imagine that 



you m sitting in a cubical room. Each wall (including floor and ceiling) of your room is 
called a fpce. A cubical room has six faces-four walls, the ceiling and the floor. You can 
consider the ceiling and the floor as horizontal walls! 

Each point where three faces of a cube (or three wal$ in your room) meet is called a 
corner. A cube has eight comers and these are indicated by A to H in Fig. 5.5a. 

Each face h& four corners. By joining the corners of a face diagonally, two face diagonals 
are obtained. For example, in Fig. 5..5b, the lines AC and BD (obtained by joining A and C 
or B and D, respectively) are two of the twelve face diagonals in a cube. The centre point of 
a face where the two face diagonals meet is called a face-centre; one of the six face-centres 
is indicated by M in Fig. 5.5b.' 

. Solid State 

For a cubic crystal, the celledge 
, 

lengths are he =me dong the throe 
axes and ere represented as a. 

Len,& of face diagod, AC 

=m 
= 2 J Z  

In U C G ,  /ACG -; 90". 

(See Rg. 5 . 5 ~ )  
Length of the body diagonal, AG 

= d z T 3  
=JZ?Tz 
= a &  

Fig. 5.5 : a) Eight corners in a cube indicated by letters A  to H--each comer is marked by red dot; twelvc 
edges indicated by number 1 to 12; b) bottom face ABCD of the cube shown; !4C and BD are the face 
diagonals and M is  face-centre; c) The right-angled AACC. 

By joining any two corners which are not in the same face,% body diagonal is obtainzd. 
There are. four body diagonals in a cube--AG, BH; FFn and EC in Fig. 5.5a. All the body 
diagonals meet at the body-centre. The .definitions of face, corner, edge, face-centre and 
body-centre apply to other crystal systems also. 

5.3.2 Bravais Lattice 

Some crystal systems, may have one or more types of lattices depending on the number of 
lattice points. If there are lattice points only at the eight comers of a unit cell, it is called a 
simple or prirnitivelP) cell. A cell which ha$ lattice points at the eight corners and the six face 
centres iscalled a face-centred ( F )  cell. A cell that has eight lattice points at the corners and 
two more at the centres ofa  pair of any two opposite faces is called an end-centred (C) cell. 
If a cell has eight lattice points at the corners and one at the body centre, it is called a body- A non-~ra~ais Lttlce structure IS 
centred (I) celi. The unit cells of the type F, C and I are called nonprimitive cells. Based on composed of two or more 

the presence of lattice points in the seven crystal systems, there are fourteen Bravais lattices; 
these are given in Fig. 5.6. 65 

I 



Cubic 

Simple (P) Body-centred (I) Face-centred { F )  

Tetragonal 
- 

Simple (P) Bodysentred (I) Simple (P) Endentred (C) 

Orthorhombic 

Simple (P) Body-centred (I) Facecentred (F) Endcentred (C) 

Hexagonal (P) lriclinic 

Rhombohedral 

Fig. 5.6 : Fourteen Bmv& Lattices. 

Of these Bravais lattices, we shall consider simple cubic (sc), body-centred cubic (bcc) and 
face-centred cubic Ucc) lattices only. In the next section, let us see how to represent the 
crystal planes. 

SAQ 2 
Describe the following : simple cubic, body-centred cubic and faa-centred cubic crystals. . . 

5.4 CRYSTAL PLANES AND MILLER INDICES 

Crystal planes are represented .by certain numbers known as Miller indices. These indices 
are determined in the following way : 

i) Find the intercepts of a crystal plane on the axes, a, b and c in terms of cell-edge 
lengths Q, b and c. Suppose that a crystal plane makes intercepts 3a, 2b, 2c as shown in 

.Fig. 5.7. 



Fig. 5.7 : Miller indices. 

~ i )  Divide the intercepts by the respective cell-edge lengths (a D and cj. For the crystal 
3a 26 2c . 

plane in Fig. 5.7, this step g~ves +- -* --* i.e., 3 ,2,2 as the answer. 
a b c  

iii) Take the reciprocal of the above numbers. Corresponding to Fig. 5.7, this step gives 
1 1  1 - 

9 - 9 - as the answer. 
3 2 2  

iv) Finally reduce the above fractions to the smallest integers having the same ratio. Write 
these numbers enclosed in parantheses without comma signs; these are the Miller 
indices of the given crystal plane. For the illustration in Fig. 5.7, the Miller indices are 
(233); this is to be pronounced as two three three plane. 

Miller indices are generally represented as (hkf). You will notice that the Miller indices are 
defined in such a way that all equivalent and parallel pland are represented by the same set 

26 2c 
of Miller indices. Thus, planes whose intercepts are 3a, 2b,2c ora, - 9 - 'br 9 ~ ~ 6 6 ,  fit, . 

3 3 
etc. are all represented by a set of Miller indices (233). 

If a face is parallel to en axis, theoretically the corresponding intercept is equal to m. To 
illustrate this, Ict us draw a crystal plane of a cubic cell which makes intercepts a, m, w. 

That is, the plane is parallel to b and e axes. Applying the above steps in order, we get the 
1 

Miller indices for this plane as (100). Remember _ b equal to zero. Th6 origin (0) and 
, ,h-* - 

the axes directions are shown in Fig. 5.8a. The (100) plane is indicated in Fig. 5.8b. 
Similarly, corresponding to the planes with intercepts Q, Q, 00 and Q, Q, u, the Miller indices 
are (1 10) and (1 1 I), respectively; these are shown in Figs. 5.8 c and d, respectively. 

Fig. 5.8 : a) The prigin, 0, the axes and the cell-edq length a in r cubk ceU; b) (100) plsne; c) (110) p h ;  
d) (111) we. 



-. 
We can calculate the distance between the adjacent planes labelled by the same Miller 
indices (hkl), but no generalised formula can be written. The actual formula in a particular 
case would depend upon the crptal structure. For example, the distance d h k ~  between the 
(hko planes of a cubic lattice is given by, 

a 
d h k ~  = ... (5.1) 

d h 2 +  k2 + l2 
where a is the cell-edge length of the cell.and (hkl) are the Miller indices. Thus, in 
sodium chloride crystal, the ceil-edge length is 5.63 X 10-"m. The distance between (1 11) 
planes is given by Eq. 5.1, 

d l 2  + l2  -b l 2  d3 
Eq. 5.1 could be used only for cubic crystals. For an orthorhombic cell, the equation for d m  
turns out to be, 

Using Eq. 5.2, work out the following SAQ. 

SAQ 3 
An orthorhombic crystal has the following parameters: 
a -- 8.2 X lo--'" m; b = 9.4 X 10." m; c -- 7.5 X m. 

What is the distance between (123) planes? 

- - -- - - - 

5.5 X-RAYS AND CRYSTAL STRUCTURE 

Crystal structur.es are wually.determined with the help of X-rays. In addition to X-rays, 
other forms of radiations having similar properties-like a beam of neutrons or electrons- 
could also be used. However, our discussion will be limited to the use of X-rays only. We 
know that X-rays are electromagnetic radiations of wavelengths much shorter' than either 
visible or ultraviolet light. In 191 1, Ewall showed that whenever the wavelength of 
radiation is of the same order of magnitude as the size of the particle in a material, the 
radiation would be diffracted by the particle. In 1912, Laue suggested that since the order of 
the magnitude of the wavelength of X-rays and the crystal lattice distances are the same, we 
should expect diffraction of X-rays by crystals. This was soon confirmed experimentally by 
Friedrich and Knipping.,Let us explain the principle of diffraction, in general, and the 
diffraction of X-rays by crystals, in p'articular. 

5.5.1 Principles of Diffraction 
The amplitude is directly related to Diffraction pattern arises due to interference of waves. When the waves are in phase, the 
the intensity of the beam. intensity is increased, (this is known as constructive interference; Fig. 5.9a); when !hey are 

out of phase (known as destructive interference), the intensity is decreased (Fig. 5.9b). If 
there are two waves starting from a common source, their phase difference will be directly 
proportiooal to their path difference. 

Fig. 5.9 : Two waves (shown by dotted and solid l i w s )  ghring rioe to a resu#nnt (shown by red dour) : a) 
cmdrudve ioterference (in-phase b a v e - m  amptihade); b) dedmctive intcrtemce (out-of-phase 

68 w8vc--smrOerpaptiade). . 



The bending of light round the edges of an obstacle is called diffraction. Consider a beam of 
light pasiing througn two slits (SI and SZ), cut near to each other on a screen and falling on 
a second screen p l a d  beyond the slits (Fig. 5.10). A series of dark and bright bands are 
observed on the screen, which are due to the cqnstructive and destructive interference of the 
two beams passing through the two slits. When their amplitudes are in-phase, the intensity 
is enhanced and when their amplitudes are out-of-phase, the intensity is decreased. Whether 
the beams are in-phase or out-of-phase will depend on the path difference between the two 
rays. 

Light beam 

Fig. 5.10 : laphPse aud out-of-phpse w a v a  

5.5.2 Bragg Law and Bragg Equation 
If the path difference between the two rays is an integral multiple (n = 1,2,3,. . . ) of the 
wavelength of X-rays, then the two rays will be in-phase and the diffraction pattern will be 
bright (i.e., with enhanced intensity). This is called Bragg law. W e d  mathematically, for a 
bright diffraction pattern, 

path difference = n A ... (5.3) 

Bragg derived an equation Eq 5.9) for X-ray diffraction of crystals. This equation is named 
after him. Some of the assumptions made by Bragg in deriving Eq. 5.9 are given below : The bright and dark spots which 

The incident waves are reflected by parallel planes of atoms in a crystal such that the appear on a photographic film are 
angle of incidence. is equal to the angle of reflection. This is called specular (mirror- called diffraction pattern; it should 
like) refledion. not be confused with diffraction 

• Each plane reflects only a fraction of incident radiation. phenomenon which is just the 

When the reflections lrom parallel planes interfere constructively, the diffraction bending of light around the edges of 
an obstacle. 

pattern arises. 
The wavelength of the X-rays is not changed on reflection; i.e., X-rays undergo elastic 
scattering on the lattice planes. Using geometric considerations, Bragg equation can be 
derived easily. 

Two parallel beams PA and QC are incident at an angle 8 on the parallel planes EF and 
GH (Fig. 5.1 1). The perpendicular distance (AC) between the two planes is d. The beams 
are reflected along AR and CS at an angle 8. The path difference between the two sets of 
incident and reflected beams (PAR and QCS) is the extra distance travelled by QCS as 
compared to PAR. To calculate the path difference, draw AB I QC and AD I CS. 

Fig. 5.11 : The taddent and tht reReded beams and the two -1 lattice 69 



Bragg equation assumes that incident 
X-rays are reflected specu!arly 
(m~rrorlike) such that the angle of 
incidence is equal to the angle of 
reflection. This assumption is 
convincing only hecause it explains 
*ha -rncrimental results. 

Path difference = (QC + CS) - (PA + AR) 
= (QB + BC) + (CD + DS) - (PA + AR) 
= B C + C D  ... (5.4) 

[ ': QB = PA and DS = AR, being opposite sides of the rectangles shown 
by the shaded portiotls in Fig. 5.1 1 1. 

Since AC I GH, /ACG = 90" = /ACB + /BCG = &B'+ 8 

[ ': /QCG and /BCG are same as 8 ] 
/ACB = 90' - 8 

In the right-angled AABC, /BAS + /ACB + /CBA = 180° 

Using Eq. 5.5, LBAC + (!XO - 6) + 90" = 180" 
/BAC = 180" - (180" - 8)  = 8 

BC 
Also, - = sin 8 or BC = AC sir] 8 

AC 
Since, AC = d, RC = d sin 8 

Similarly, we can prove that CD=dsin 8 

Using Eqs. 5.4, 5.6 and 5.7, 
path difference = 2d sin 8 - 
Again substitut:.~g in Eq. 5.3, we get, 

nA = 2dsin 6 

Eq. 5.9 is known as Bras equation. It is useful in crystal structure determination. In this 
equation, A is the wavelength of X-rays used, d is the distance or the spacing between the 
planes. 'Ile value of n gives the order of reflection. 

If n = 1, it is first-order reflection. 
If n = 2, it is second-order reflection and so on. 

After reading the above section you should be able to hive the following SAQ. 

SAQ 4 
If the separation between the lattice layers in:a crystal is 404 pin and the wavelength of 
X-rays used'is 154 pm, what would be the angle of incidence at which reflection would 
occur? Assume n 7 1. 

- 

15.6 EXPERIMENTAL METHODS FOR THE 
DETERMINATION OF CRYSTAL STRUCTURE 

In any method of cry:tal structwe determination, we must find out 6 as well as the intensity 
of the diffracted beanr. There are bas~cally three methods-hue, powder and the rotating 
crystal-which ace used for the determination of the above quantities. In this section we 
shall discuss the outline of powder method only. 

5.6.1 Powder Method 
Ili this method, we use a powdered sample containing microcrystals wmch are ra~r,lomly 
oriented. There are enough of microcrystals which will have the proper orientation lor 
diffraction. The diffraction beam corresponding to each scattering fans out in the form of a 
cone, the axis of which lies along the incident beam as shown in Fig. 5.12. This gives rise to 
bright rings on a circular photographic film and is known as powder pattern. The X-ray 

-- 



Cone of 
diffracted rays 

Fig. 5.12 : Powder method. 

powder pattern for sodium chloride is shown in Fig. 5,13. Using powder method, the 
interplanar spacing can be found out since both h and 0 are known. 

V1 = 3 WI=;M 8 - 8 2 0 - N ' m m  dm" d d  cr 3 

Fig. 5.13 : X-ray powder panern for sodium chloride. 

5.6.2 Some Experimental Findings 
Some noteworthy features in crystal structure determination by X-ray diffraction are given 
below: 

11 appears that a set of planes 1s retlecting the X-ray beam. 
The reflection takes place only for certain values of 8; these values of 0 must satisfy 

. Bragg equation (Eq. 5.9). 
It is a common practice to set n = 1 in Eq. 5.9, unless specified otherwise. Higher 
order reflections (n > 1 )  are weak. 

The x-ray diffraction method leads us to the value of cell-edge length which can be used to 
detfrmine the density of the crystal. 

5.7 DETERMINATION OF UNIT CELL 

The comparison between the experimental and the theoretical values of density could help 
us in determining the cubic cell type. First let us calculate the number of atoms belonging to 
a unll cell in each type of cubic cell. 

5.7.1 Number of Net Atoms in a Cubic Unit Cell .. 
An atom at the hody-centre of a unit cell belongs to that cell only (Fig. 5.14a). An atom on 
the face-centre of a unit cell is shared by unit cells (Fig. 5.14b) and thus, only half of 
such an atom belongs to one unit cell. An atom at the edge-centre of a unit cell is shared by 
four unit cells (Fig. 5.14~);  one-fourth of an atom in the edge-centre belongs to one unll 
cell. But an atom at the corner of a unit cell will be shared by eight unit cells as shown in 
Fig. 5.14d. Hence, we can say that one eighth of an atom in a corner belongs to a particular 
unit-cell. Using this background, let us calculate the number of net atoms present per un~ t  - 
c ~ b l l  lor a ~ l r i 1 ~ l e ~ u 6 b ,  face-centered cubic or body-centred cubic structure. 

Solid State 



The number of net atoms per unit 
cell are one, two and four in simple 
cubic, bcc and fcc structures. 

In this unit, the cell-edge lenghs'apd 
the distance between the planes are 
given in m or pm units; but it is 

0 

usual to rtate such data in A unit also. 

Fig. 5.14 : a) An atom at the body-ceotre of a mit ceU; b) An atom at the face-centre shared by two unit 
cells; c) An atom at the edge-centre shored by four unit cells! d) An atom in the comer shared by eigM 
unit cells. 

0 In a simple cubic cell, there are atoms only at the eight corners; and hence, a simple 
1 

cubic structure has only one net atom (8 X - = I) per unit cell. 
8 

. On the other hand, in a bcc structure, there are atoms in the eight corners and'the 
1 

centre of the cell; hence, there are two net atoms [(8 X - ) + 1 = 21 per unit cell of a 
8 

bcc structure. 

Finally, for a fcc structure, there are atoms in the eight corners and six face centres. 
1 I 

That is, a fcc structure has four net atoms [(8 X - ) + (6 X -) = 1 + 3 = 41 per 
8 2 

unit cell. 

The density of a crystal depends on the number of atoms, their mass and the volume of the 
unit cell. Let us no& see the calculation of the densities of these three types of unit cells. 

5.7.2 Density Calculation 

Mass 
It is known that density = - ... 

Volume 
X-ray measurements give us the celledge length. If the celledge length is a m, (i.e, a metre) 
then the volume of the unit cell = a' m' ... (5.1 1) 

The mass of an atom of the substance is obtained by dividing the mass of one mole atoms [i.e., 
atomic mass (w) in kg mol '1 by Avogardo constant ( N A  , which is a equal to 
6.022 X lo'.' mol I). 

w kg mol-' w 
Mass of on atom = -- = - kg ... 

NA mol N\ 
A simple cubic structure has only one atom per unit cell; hence. mass of unit cell of a simple 
cubic crystal js given by Eq. 5.12. Substituting the proper values from Eqs 5.1 1 and 5.12 in 
Eq. 5,10, we get, 



the density 
W ... of a simple } = - kg m-j (5.13) 

cubic cell 

Since, simple cubic, bcc and fcc unit cells have one, two and four atoms per unit cell, the 
densities of bcc and fcc are given by : 

2w Density of a bcc cell, = 7 kg m-3 
NA a 

4w 
Density of a fcc cell = 7 kg m-j 

NA a 

n w  
In general, the density of a cubic unit cell (p) = 7 kg m-j ... (5.16) 

NA a 
where n is the number of net atoms per unit cell. 
Rearranging Eq. 5.16, we get, 

5.7.3 Experimental Method 
The cell-edge length (a) and the density (p) of a crystal are experimentally determined. These 
values are substituted in Eq. 5.17 and n is calculated. Depending on whether n = 1 or 2 or 4, 
the unit cell is simple cubic or bcc or fcc. Let us work out an example. 

Nickel metal packs in a cubic unit cell with a cell-edge length (a) of 3.524 X lo-'' m. The 
density (p) of nickel is 8.90 X lo3 kg m-3. Let us find out the unit cell type for nickel. Since 
atomic mass of nickel is 58.7, w = 0.0587 kg mol-I 

First we have to calculate n using Eq. 5.17 

- - 8.90 X lo3 kg m-3 X 6.022 X loz3 mol-I X (3.524 X lo-" m13 
0.0587 kg mol-' 

= 4 (rounded to the nearest whole number). 

Since there are four atoms per unit cell, nickel has a fcc lattice. 

In the following section, we shall study the nature of bonds responsible for holding the solid 
together. Before that attempt the following SAQ. 

S A Q  5 
Tungsten forms bcc cbtals. Its celledge length IS 3.16 X 10-'%. Find the density of 
tungsten: 

5.8 NATURE OF BONDS IN SOLIDS 

There are basically two theories or models to explain the nature of bonds in solids. One is 
known as bond model and the other as band model. These two names may sound new; 
however, they are the same two approaches that we have already studied (in Units 4 and 5 
of Atoms and Molecules course) in connection with the formation of a molecule by the 
combination of two or more atoms. Thus the bond model is the same as the valence bond 
apprpach. Here we consider a crystal as a three dimensional arrangment of atoms and each 
of these atoms has valence electrons which can form normal chemical bonds with 
neighbouring atoms. These bonds may be ionic, covalent or van der Waals in character. In 
the other approach, which is called the band model, we follow the molecular orbital 
treatment. All the nuclei with their core electrons are considered as a fixed periodic array 

- 



States nl  Matter 

Unit cell-edge length must connect 
equivalent points If there is an atom 
at the corner of a unit-cell, similar 
atoms must be present at all the 
cornen. If there is an atom at a face- 
centre, the opposite facecentre also 
must have the similar atom. 

over which the valence electrons are spread out. It is like pouring of electron cement over a 
fixed arrangement of nuclear bricks. We have already read about ibnic bond, covalent 
bond, hydrogen bond, etc., in Unit 3 of Atoms and Molecules course. We shall now study 
metallic bonding in terms of the above two models. 

Metallic Bonding 
According to the bond theory, the metallic solids can be considered as having simple 
covalent bonds between adjacent atoms. However,in these cases, the number of electron 
pairs available for bond formation is less than the number of orbitals available. Hence, 
when such substances are placed under an applied electric field, the electrons from the filled 
orbitals can easily flow into the vacant orbitals, thus making them highly conducting. 

In the band theory of metals, a crystalline metallic solid is considered as a single giant 
molecule: Linear combination of atomic orbitals on ali the atoms is taken to give molecular 
orbitals of the solid just as in the case of simple diatomic molecule. It is also assumed that 
there is negligible overlap of inner shell atomic orbitals and the energies of these remain 
practically the same as atomic orbitals on isolated atoms. However, the outer orhitals do 
combine to give molecular orbitals of bonding and antibondixg character. Suppose that a 
crystal of sodium contains N atoms, where PI is of the order of 10". Neglecting the innei 
orbitals, there are N number of 3s orbitals on all the atoms in the crystal which can 
combine to give N molecular orbitals or delocalised crystal orbitals. Since each molecular 
orbital can hold 2 electrons, the total number of electrons which these orbitals can hold is 
2N. The actual number of electrons is however only N, since each atom is contributing only 
one 3s electron. Hence, only half of the molecular orbitals will be occupied by the electrons 
and half will remain vacant. Further, since there are N molecular orbitals and the total 
energy difference between the highest and the lowest orbital is very small, the energy 
separation between the adjacent molecular orbitals would be very small. For all practical 
purposes we can consider these molecular orbitals as forming a continuous band of energy 
rather than separate energy levels. Thus we have a situation where a band of vacant energy 
levels lie very near to a band of occupied energy levels. Therefore, the electrons present in 
the occupied lower energy levels can easily move out to vacant band. This is the reason 
given for metals being good conductors of electricity. In the next section, we shall study the 
structures of ionic, covalent and molecular crystals. 

5.9 IONIC, COVALENT AND MOLECULAR CRYSTALS 

In this section.we shall consider the structures of some crystals, which have either ionic or 
covalent bonds; examples are also given for crystals having~ovalent bonding with van der 
Waals attraction or hydrogen bonding. 

5.9.1 Ionic Crystals 
As examples for io*nic crystals, we shall consider caesium chloride and sodium chloride 
which have bcc and fcc structures, respectively.\ 

bcc Structure 
The structure of a bcc crystal can be defined in terms of unit cell-edge length and two 
unique positions in the cell. Consider a crystal like CsCl which has bcc structure and has 
two different ions in lattice positions. Suppose the centre of a cube is occupied by Cs' ion; 
then, this is one of the unique positibns of the crystal. It is unique because there is no other 
point within the cell which is one cell-edge length away and which can be occupied by 
another Cs' ion. Now if one of the corners of the cube is occupied by a chloride ion, then 
all the eight corners of the cube must be occupied by chloride ions. This is so because each 
of the corners is one unit cell-edge length away from its nearest neighbours and if one 
corner is occupied by Cl- ion, its immediate neighbours which are unit cell-edge length 
away must also be occupied by chloride ions. We can say that any one corner position is 
unique in the sense that once you associate an atom with this position, then all the other 
corners automatically get associated with the similar atoms. Thus, once these two positions 
are defined, the whole crystal gets &fined '(~i~.  5.15). 
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Fig. 5.15 : CsCl structure 

Since CsCl crystal has one Cs' ion at the centre and eight CI- ions at the corners, it has one 

I 
Cs' ion and one CI- ion (8 X - = I) belonging to one'unit cell as per discussion in 

8 

Subsec. 5.7.1. That is, each CsCl unit cell has one formula unit. 

fcc Structure 
In a fcc structure, there are four unique positions; once these positions are defined, the rest 
of the crystal gets completely described. These are the centres of jhree adjacent faces and 
one corner. Once one corner, is occupied by an atom, all other corners will have similar 
atoms. Further, if one atom occupies the centre of one face, the centre of the opposite face 
would also be occupied by sii:.;lar atom. Thus, by describing the atoms which odcupy the 
centres of adjacent three faces, we know the atoms occupying the centres of all the six faces 
Similarly, all the eight corners are described, once we know the atom occupying one of the 
corner positions. Thus, the whole crystal is described. Sodium chloride is one such example. 
It can be Considered to be composed of two interpenetrating fcc lattices, one made up of 
sodium ions and the other made up of chloride ions (Fig. 5.16). 

A unit cell of sodium chloride can be 
considered to be made up of 

onefcc unit cell of sodium ions 
and 
onefcc unit cell of chloride ions. 

Since each suchfcc unit cell has four 
atoms (or ions), sodium chloride 
crystal h p  four NaCl formula units 
per unit cell. 

Fig. 5.16 :'Structure of sodium chloride. 

The sodium ion lattice is shifted in all the three dimensions by half cell-edge length from the 
chloride ion lattice. A unit cell of NaCl contains four formula units. 

5.9.2 Covalent Crystals 
In covalent crystals, definite covalent bonds join all the atoms in the crystal. The structure 
of a covalent crystal is related to the number of valence electrons, the nature of orbitals 
involved in bond formation and their orientation. One of the most commonly cited 



examples is that of diamond (Fig. 5.1 7). Each carbon atom in diamond is tetrahedrally 
bonded to four neighbouring carbon atoms. This is so since each carbon has four sp' 
hybridised orbitals pointing towards the corners of a regular tetrahedron. These orbitals 
overlap with the similar set of orbitals on the neighbouring atoms. Crystals thus formed are 
hard and heac t ive .  

Fig. 5.17 : Structure of diamond. 
Fig. 5. 18 : Structure of iodine crystal-the 
basis is 12  molecule. 

Let us now see another type of covalent crystals known as molecular crystals. 

5.9.3 Molecular Crystals 

In molecular crystals, the moleculesare held together due to van der Waals interaction. 
These crystals acquire the structure which has the minimum energy maintaining the original 
shape of the discrete molecules. Iodine (Fig. 5.18) and carbon dioxide crystals are examples 
of this type. , .. 

There is a class of crystals which have hydrogen bonding between the molecules. An 
example of this type is ice. In ice. each oxygen atom is tetrahedrally surrounded by four 
hydrogen atoms, two being linked through covalent bonds in the same molecule and the other 
two through hydrogen bonds to different water molecules. In the next section, we shall 
illustrate the four main types of crystal structures in metals. 

SAQ 6 * 

The deoslty of potasium bromide is ,2326 x 10' kglm-'. Its cell edge-length 15 
6.54 X 10 "' m. It has a cuhlc structure. ~in&ut$@ether it hap 
structure. "c $3 * 
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5.10 COMMONLY ENCOUNTERED METALLIC 
STRUCTURES b2 

* d 

Most of the metals crystallise in one of the four basic structures-- simple cuh~c, body- 
centred cublc (bcc), hexagonal closest packed (hcp) and tace-centred cubic (or cubic 

hcp and structures, each layer closest packed-ccp). Simple cubic structure is not yery common except perhaps for 
of atoms is closely packed as the polonium metal which packs in this structure. Alkali metals, Ba, V, Cr, Mo, etc., crystallise 
name suggests. in bcc structure. The number of nearest neighbours (coordination number) is 8 in bcc 

arrangement. 
The unit cell with ccp arrangement is 
called fcc unit cell, Each atom in hcp and ccp arrangements touches three atoms in the plane above, three in the 

76 
plane below and six in the same plane. Thus, in both the cases, the coordination number is 



12. Further, in ccp and hcp structures, 74% of the total space is filled with atoms. The difference 
between the hcp and ccp structures (Figs. 5.19 a and b) is in the arrangementof the third 
layer of atoms with respect to the first layer. Metals like Be, Mg, Co, Zn pack in the hcp 
structure, whereas those like Ag, Au, Cu, Ni crystallise in ccp arrangement. . 

Solid State 

Fig. 5.19 : a) kp---thc a t o a  in the tbW hycr are stmignt above those in the first k y e r d c d  
ABAB .,.. b) c&p --tbc .toma h thc thbd hyw srmngcd  ha^ those in 
tbc tlrst-alkd MCABC ..- amagemmt. 

5.1 1 SEMICONDUCTORS 

Semiconductors are solids which are insulators under normal conditions but become The addition of impurities to a 
conductors when heated or doped with impurities. The electrical conductivity of a semiconductor is called doping. 

semiconductor increases with temperature. The semiconductors can be broadly classified 
into two types. Let us consider them one by one. 

' - 
5.1 1.1 Intrinsic Semiconductors 
Intrinsic semiconductors are pure substances which conduct elixtricity when heated. In an 
intrinsic semiconductor, the energy gap between the highest filled band and the next empty 
one is very small. Pdre germanium, pure grey tin, etc., are intrinsic semiconductors. At 
absolute zero, they are insulators. But increase ln temperature promotes some electrons 
from filled to next higher band across the gap; so they become conductors. The number of 
excited electrons increases as the temperature increases; so their conductivity increases with 
increase in temperature. 

5.11.2 Extrinsic Semiconductors 
Semiconductors with impurities are called extrinsic semiconductors. They can further be 
classified into n-type and p-type semiconductors. 

n-type Semiconductors 
When a semiconductor is doped with an impurity having more valence electrons than those 
id the semiconductor, a n-type semiconductor is produced. Such an impurity can donate 
electron(s)(to the valence band of the semiconductor, and is called a donor. Phosphorus, 
arsenic or antimony (each having five valence electrons) are examples of donor impurities 
added to gemanium or silicon (each semiconductor having four valence electrons). The 
addition of donor impurity to the semiconductor provides additional energy levels and if 
they are rightly related to the bands of the semiconductor, conductivity may result. That is, 
if the impurity contains a full energy level just below that of an empty band in the 
semiconductor, the electrons from the impurity go to empty band in the semiconductor, 
hence, it becomes negatively charged (n-type). Upto certain temperature, the conductivity of ; 
a n-type semiconductor increases with increase in tempenturc. 1 



ptype Semiconductors 
When the impurity used for doping has less valence electrons than the semiconductor, the 
~mpurity can accept electron(s) from the valence band of the semiconductor. Such an 
impurity is called acceptor. The addition of boron, aluminium, gallium or indium (each 
hav~ng ,three valence electrons) to silicon or germanium (each semiconductor having four 
valence electrons\ ic, an example of this type. The essential feature is that the impurity must 
contain an empty energy level just above a full band in the semiconductor; the electrons 
from the full band in the semiconductor will pass to the empty level of the impurity. 
Passage of electrons from the semiconductor to impurity makes the former positively 
charged @-type). The effect of temperature on the conductivity of a p-type semiconductor is 
similar to that of n-type sem~conductor. 

The combination of p-type and n-type semiconductor is called p-n junction. The p-n 
junctions are used as rectifiers, solar cells, light emitting diodes and other electronic devices. 

SAQ 7 
Differentlate betweer~ intrinsic and extrinsic scn~rconductr>rs. 
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5.12 SUMMARY 

In this unit, we have briefly described those solid substances which can be classified as 
crystals. We have also given a hint at the potential usefulness of crystal studies. We 
summarise below what we have studied so far : 

The terms-lattice, basis and unit cell-were explained. 
Seven crystal systems and fourteen Bravais lattices were discussed. 
Diffraction method and its utility in crystal structure determination were emphasised; 
an experimental technique was then discussed. 
The nature of bonding in crystals with special reference to metallic bonding was 
discussed briefly. 
Types of semiconductors.were stated and defined. 

5.13 TERMINAL OUESTIONS 

1) Show that for a simple cubic cell, the ratio of the volume occupied to the volume of the 
unit cell is 0.52. 
(Hint : Assume (i) atoms are spherical and (ii) they touch along the cell-edge, i.e., 

a 
radius = - ). 

2 

2) In the following cases. mark 'L/' for correct statement and 'X' for wrong statement : 

i) The Miller indices of a crystal plane which makes intercepts 2a, 3b, 2c are (232). 

ii) The basis in ice crystal is H:O molecule. 

iii) A cube has twelve edges. 

iv) The unit cell of caesium chloride crystal contains two formula units of CsCI. 

3) What are the separaiions of the planes with Miller indices ( I1 1 ), (21 1) and ( 100) in a 
cubic crystal having cell-edge length of 432 pm? 

4) How many net atoms are there In  a fir and bcc unit cell? Arrive at the conclusior~ by 
geometrical arguments. 

5) Identify the type of attractive forces (or bonding) mainly responsible for crystal 
bonding in the following cases: 

i) diamond ii) potassium bromide 

iii) aluminium iv) helium 



6) Sodium crystallises in a bcc lattice with a'cell-edge length of 4.23 X lo-'" m. Calculatr 
'the density of sodium metal. 

7) The density and cell-edge length of sodium chloride are 2.163 X 10' kg m-' and 
5.63 X lo-"' m, respectively. Using these data, arrive at the number of form~la  units 
per unit cell of sodium chloride crystal. 

5.14 ANSWERS 

Self Assessment Questions 

1) A unit cell is the smallest unit chosen which repeats itself ii three dimensions. 

2) Simple ciubic - lattice points at the eight corners only; 
bcc - lattice points at the eight corners and the body-centre; 
fee -- lattice points at the eight corners and the six face-centres. 

4) Using Eq. 5.9, 
sin 0 = 0.191 
.'. 0 = sin ' 0.191 

= 11° 

5) Using Eq. 5.14, density of tungsten = 1.936 X lo4 kg m-' 

6) - Let .us find out the number of formula units of KBr present in a unit cell using Eq. 5. I?. 
w - Molar mass of KBr = 0.1 19 kg mol - I .  

- - - 2.826 X 10' kg m-j% (6.54 . X lo-'Ofi)' X 6.022 X l ~ ~ ~ m o l - '  

* 119 kg mol-' 
= 4 
Since it has four formula units per unit cell, it has NaCl structure and not CsCl 
structure. 

7) The conductivity of an intrinsic semiconductor is due to the existence of a vacant 
conduction band separated by a small energy gap from the filled valence band. An 
extrinsic semiconductor owes its electrical conductivity largely to the presence of an 
impurity with appropriate energy levels. 

I Terminal Questions 

I I )  Since the spheres touch along the edge, the cell-edge length (a) is twice the radius df a 
a. 

sphere (r) ,  i.e., r = - . 2 3 47rr3 - Ira 
The volume of a sphere = ------ - - 

3 6 

1 A simple cubic lattice has one net sphere only per unit cell (Subsec. 5.7.1). Hence, 
7ra3 

volume occupied in a unit cell = - 6 

1 But the volume of the unit cell = a' 

I Volume occupied .'. Fraction of the volume filled = 
unit cell volume 

2) (i) X (ii) (iii) (iv) X. 

3) 2.49 X 1 0-lo m; 1.76 X 10- '~m and 4.32 X lo-" m. 

4) A jcc uhit cell has four net atoms while a bcc unit cell has two net atoms (see subsec. 
5.7.1). 

Solid Slate 



5) I )  Co~alent bonding 
11) Electrostatic forces (~oni'c bonding) 
i l ! )  Metallic bonding 
iv)  van der waals interaction. 

7) Substitut~ng thc dens~ty ( p ) ,  cell-edge length (a) and molar mass ( w )  of sodium chloride 
in Eq. 5.1 7, we get, 

,, r 2.163 X 10' kg m-' X (5.63 X lo-'' m)3 X 6.022 X lo2' mol 

0,05845 kg mol 
= 4. 
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