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INTRODUCTION 

So far we concentrated only on that part of calculus~which is based on the operation 
of the derivative, namely, 'differential calculus'. The second major operation of the 
calculus is integral calculus. The name 'integral calculus' originated in the process 
of summation, and the word 'integrate' literally means 'find the sum o f .  
Historically, the subject arose in connection with the determination of areas of plane 
regions. But in the seventeenth century it was realised that integration can also b e  
viewed as the inverse of differentiation. Integral calculus consists in developing 
methods for the determination of integrals of any given function. 

The relationship between the derivative and the integral of a function is so important 
that mathematicians have labelled the theorem that describes this relationship as the 
Fundamental Theorem of Integral' Calculus. 

In this unit, we will introduce the notions of antiderivative, indefinite integral and 
the notion of definite integral as the limit of a sum. The Fundamental Theorem of 
Integral Calculus is also discussed in this unit. 

Objectives 
After reading this unit, you should be able to: 

. compute the antiderivative of a given function, 

use the properties of indefinite integrals to compute integrals of simple functions, 

compute the definite integral of a function as the limit of a sum, 

compute the definite integral of a function using the Fundamental Theorem of 
Integral Calculus. 

* 

ANTIDERIVATIVES 

So far, we have been occupied with the 'derivative problem', that is, the problem 
of finding the derivative of a given function. Some of the important applications of 
the calculus lead to the inverse problem, namely, given the derivative of a function, 
is it possible to  find the function? This process is called antidifferentiation and the 
result of  antidifferentiation IS called an antiderivative. The importance of the 
antiderivative results partly from the fact, that scientific laws often specify the rates 
of change of quantities. The quantities themselves are then found by 
antidifferentiation. 

T o  get started, suppose we are given that f'(x) = 5. Can we find f(x)? It is easy to  
see that one such function f is given by f(x) = 5x, since the derivative of 5x is 5. 
Before making any definite decision, consider the functions 

5x + 3,5x - 8,5x + f i  



Each 0 1 '  thcsc functions has 5 as its derivative. Thus. not only can f(x) be 5x, but 
i t  c;rn ;tlso I,c 5x + 3 o r  5x - 8 or  5x + d5. Not enough information is given to  help 
us rlctLrminc which is the correct answer. 

1.ct us look i ~ t  cach of these possible functions a bit more  carefully. We  notice that 
each o f  these functions differs from another only by a constant. Therefore, we can 
say that if f'(x) = 5 then f(x) must be of the form f(x) = 5x + c,  where'c is a 
constant. We call 5k + c the antiderivative of 5. 

More generally, we have the following definition. 

Definition 1 : Suppose f is a given function. Then a function F is called an 
antiderivative of f, if F1(x) = f(x) + x. 

We now state an important theorem without giving its proof. 

Theorem 1 : If F I  and F, are two antiderivatives of the same function, then F ,  and 
F2 differ by a constant, that is, 

F , (x)  = F2(x) + c. 

Remark : From Theorem I ,  it follows that we can find all the antiderivatives of a 
given function, once we know one  antiderivative of it. For instance, in the above 
example, since one antiderivative of 5 is 5x, all antiderivatives of 5 have the form 
5x + c. where c is a constant. 

Let us now d o  a few examples. 

Example 1 : Find all the antiderivatives of 2x. 

Solution : W e  have t o  look for a function F such that F1(x) = 2x. Now, an 
d antiderivative of 2x is x2(check that - (x2) = 2x). Thus, by Theorem 1,  all dx 

i~ntiderivotives of 2x are given by x' + c,  where c is a constant. 

Example 2 : Find all the antiderivatives of b. 
Solution : W,c lii~ve t o  look for n function F such that F1(x) = &. Since an 

antiderivative of & = therefore, all the antiderivatives of x are given by 
312 

7 - + c, where c is a constant .  
3 

You may now \ry this exercise. 

E l )  Find all the antiderivativcs o f  cach of the following functions. 

(a)  f(x) = x. (b) f(x) = 9xX (c) 'f(x) = -3x 

Let us n o w  view integration &\ i111 inverse of differentiation. 

8.3 INTEGRATION AS INVERSE OF 
DIFFERENTIATION 

In the last section we have said that all the antiderivatives of 2x and f i  are given by 

x' + c andzx"!' + c,  respectively, where c is a constant. In general, for any given 
3 

function f. we usc the symhol f(x) dx to denote the antiderivative o f f  with respect 

to X. The symbol I is called integral sign and the process of antidifferentiation is 

referred to  as an  integration. In other words, the process of integration and 

diffirentiation a re  inverses of one another: Thus. we write I f(x) dx = F(x) + c. 

The Integral 



where F denotes the antiderivative of f. In the above equation. f(x) dx is r;flcd 

an indefinite integral (or simply an integral) of the function f, c is called the constant 
of integration and x is the variable of interest. 

\ 
We always record the variable of interest together with the letter d .  For example. 

if the variable of interest is t rather than x, then we write f(t) dt for the integral 
of f(t). 

Look at the following example. 

Example 3 : Integrate cos x with respect- to x .  

d Solution : Since we know that - (sin x) ='cos x, an antiderivative of cos x is sin x. 
dx 

Therefore. jcos x dx = sin x + c, where c is any constant. 

We now state two'properties of indefinite integrals which allow us to find many 
more integrals. 

General Properties of Indefinite Integrals 

The following two properties of indefinite integrals are useful when evaluating the 
integral of a function which is cornposed of the sum or difference of two or more 
functions. 

That is, the integral of a constant multiplied hy a function is constant multiplied by 
thc integral of that fi~nction. 

The integral of the sum or difference of two functions is equal to the sum or 
difference of their integrals. 

The propcrtics (A) and (B) ctui he verified hy cliffcrcntiation. But we will not worry 
about the actual verification here. They are thc properties corresponding. 
respectively, to constant ~nultiplc and sum or difference rules for der~vntivcs (see 
Unit 6). 

Note that (B) also hold good for :I Cinitc number of functions, that i3. 

= I f,(x)dx + \ f2(x)dx f I fdx)clr f . . . .  . f ~',~(x)dx 

Let us now {lsc tlicsc propcrtics in solving tlic following example\. 

Solution : Now I (Zx + 4x3)dx ='I 3~ dr + I dx (by rule B)  - 

x2 x4 
= 3 + 4- + c. (wlicrc c is a constant - 4 of integration) 

Remcmher, we ciln always chcck tlic result obtainccl hy differentiating it. Since 

Therefore. our :unswcr of Example 4 is correct. 

Let us look at another cxumplc. 



Example 5 : Evaluate 1 (2ex - 3 &) dx 

Solution : We have. 

= 2 1 ex dx - 3 1 xi/' dx (rule A) 

Therefore, 1 (2ex - 3 f i )  dx = 2ex -:ZX'~ + c ,  c being the c o n s t k t  of integration. 

You may now try the following exercises. 
4 

E2) Find the following integrals: 

I a)  j ( x 2 - x -  l ) d x  
b) 1 sin x i x  

-5, e2' 
e )  1 ( 4  - 5e - 5) . 

E3) Integrate the following : 
I 

a)  3x5 b) 3x + 4x' c) e x  + 2sin x - 3cos x 

d)  5 ~ 0 s  x + 2x - 10 (x + x 2 y  
e, 7 f )  xn,  n + '-1. 

We have so  far regarded integration as inverse of differentiation and defined the 
indefinite integral of a given function. In the next section we shall he defining the 
definite integral of a given function. It will be shown that a definite integral can 
also be represented as the limit of the sum of a certain number of terms, when the 
number of terms tends to infinity. 

8.4 DEFINITE INTEGRAL AS THE LIMIT 
OF THE SUM 

Suppose somebody asks you; what is meant by the areas of a geometrical figure? 
You will at once answer that it is a measurement that gives the size of the region f enclosed by the figure. For instance. the area of a rectangle is the product of it< 
length and width, the area of a triangle is half the product of the lengths of the 

1 base and the altitude, and so  on.  However, how d o  b e  define the area of a region 

3 
in a plane if the region is bounded by a curve? We,begin with the definition of the 
area of such region, and we shall be using this definition to  motivate the  definition 
of the definite integral. 

Areas and Integrals 

In order to  find the area of a region bounded by a curve, we shall be considering 
the sums of many terms and so it is. convenient to m a k e  use of a.notation 1 t o  

'i 

denote the sum. 2 is a Greek ~ e t t e ; .  For instance, the Notation i2 denoted the 2 
I =  I 

sum of squares of the first five integers, that is, 



Formally, we can have the following definition. 
n 

where, m and n are integers. m 5 n. 

In Definition 2 above the number m is called the lower limit of thc sum. and n is 
called upper limit of the sum. The symbol i is called the index of summation. It is 
a "dummy" symbol, because any other letter can be used for' t h~s  purpose. For 

i i 

instance & k' and Ti' are kj th equivalent to (3' + A'+ 3'). 
. - - 1% 

I - 

Fig. 1 : Appro'ximation of an area 

We now describe the method of fiflding the area by finding sums in terms of what 
we call the lower sum and the upper sum. 

Consider a shaded region R in the plane as shown in Fig. 1. 

The region R is boundkd by the x-axis, the lines x = a,  x = b, and the curve having 
the equation y = f(x), where f is continuous on the closed interval [a, b]. For 
simplicity, we have assumed f(x) 2 0 for all x in [a, b]. Let A denote the area of 
a region R. 

The first stage of the method is to divide the closed interval [a, b] into n 
sub-intervals. We assume that each of these sub-intervals are of equal length, say 

of length h. Therefore, h = (b-a) . Denote the end points of these 
n 

sub-intervals by x,,, x , ,  x,, ..... , xn-,,x,,  where,^,, = a , x ,  = a+h ,  .... 
xi = a+ih, xn-, = a + (n-l)h, xn = a + nh = b. 

Secondly, in each of the sub-intervals we approximate the area under the curve by 
two types of rectangles, each havihg the sub-interval as its base. The first type of 
rectangle has the minimum value of the function on the sub-interval as height, and 
the second, the maximum value of the function on the sub-interval as its height. 

Thirdly, we sum the areas of the rectangles of the first type, which lie within the 
region and which produces an under-estimate (lower sum) for the area A, and sum 
the areas of the second type of rectangle which gives an over-estimate (upper sum) 
for the area A. 



Finally, the required area A is found by seeing what happens to  these upper and 
lower sums as the lengths of the sub-intervals, that is, the width of the rectangles, 
tend th 0. (Since the n sub-intervals have equal width, this is equivalent t o  
letting n-+".) 

Consider the interval [xu= ,. x,]. Let MI be the maximum value of the function f o n  
this sub-interval nnd mi be the minimum value of f on  this sub-interval. Then the 
ilrcil A, hounclcd hy x = X ,  x = x, ,  y = 0 and y = f(x) is approximated as  

Proceeding in the silrnc way in othcr suh-intervals and thcn adding the results we 
conclude that 

where s, -\' mlh is the lowcr sum that is. an undcr-estimate for the area and 
17 

n I 

Sn = Mlh. is thc upper sum. t l ~ c  ovcr-cstimi~te for the ;Ire;), 
i = l  

The  area we are interested in is squeezed between the lower sum and upper sum. 
When the upper and lower sums have the same limit as  JI -+ (as n-+x we have 
h+0) we. get the required a1.e;). 

Symbolically we write 

A = lim s,, = lim S,, 
IF+= IF+= 

Remember that there may be cases in which upper and lower sums may not have 
the same limit as n-x. 

In the above discussion we assumed f(x) r 0 in each sub-interval. But this discussion 
is also va1id;for other situations. 

We can now give the following definition. 

Definition 3 : I f f  is it continuous function defined on the closed interval [a. b] thcn 
b 

the defhite integral of f from a t o  b, denoted by I f(x) dx. is given by 
il 

If these limits exist, where m, and Mi are respcctivcly the minimum and maximum 
values of the function on each sub-intervitl [ x , - ~ .  xi] of [a. b]. 

Note that in the above definition the existence of j f(x) dx. depends on the existence 
I 

of the limit. Incase the upper and lower sums d o  not tend t!) a u n i a l l ~  limit as 11-x. 

we s i y  that f(x) dx, does not exist. 
11 

, . 
h 

. In the notation for the definite integral J f(x) dx, f(x) is called integrdnd. a is 
I 

called the lower limit, and b is called the 'upper limit. 

Remark : You may notice that by defining definite integralias the limit of a sum we 
h 

hove shown the equality between I f(x) dx. and the area A considered earlier. 
I 



In other words f(x) dx. represents giometrically the area founded by the curve 
1 7- 

y = f(x), the x-axis and the two ordinates x = a and x = b. 

Let us now d o  few examples using Definition 3. As it is obvious that finding m, and 
MI for a given function on each sub-interval of the given interval is not an easy 
task. We thus, assume in the following examples the function f to  be  an increasing 
function in the given interval. In that case for each sub-interval [x,-,, x,] of the 
given interval the  minimum value of the function will be attained at x,-,, and the 
maximum value will be attained at  x, (ref. Unit 7). In such cases we will have 

b I f(x) d r  = lim h f(xi-,) = lim h f(y), h = provided these 
a .  

n 

limits exist. 
3 

'Example 6 : Evaluate x2 dx as the limit of a sum. I 
Solution : Consider an equal partition of the closed interval [ I ,  31 into n sub- 

3-1 - 2. If we choose x,, 1 s i s n as the right end point of each intervals. Then h = - - - 
n n 

2 2 2 2 sub-interval, we have xl  = 1 + -, x2 = 1 + 2 (-), ...... , xi + i (-), X, = 1 + n (-). 
n n n n 

Let us now calculate the upper sum and lower sum. 

n 
The sum of first n natural 

n Upper sum = lim 1 h f (xi) 
I)+% i= 1 

numbers is i = w. and 
i = I  

2 

the sum of the square of the first 
n natural numbers 
n 

= 
n ( n i l )  (2n+l)  

i = I  
2.3 

= lirn 
[ b  + 

+ 8n2+12n+4 
n- 3L 3n2 

r 1 

1 26 (since lim - = 0) = - 
n-+x n 3 

26 Similarly, you can show that lower sum = lirn 
n-r i = l ,  

3 

26 / fix) dx = 7 



26 E4) Show that in Example 6, lower sum = -. 
3 

In definition 3, the closed interval [a, b] is given, and so we assume that a < b. T o  
consider the definite integral of a function f from a to  b when a > b o r  when 
a = b we have the following definitions. 

Definition 4 : If a > b, then 

I> 

/ f(x) dx = - [ RX) dx, if j f(x) dx exists. 
I I7 h 

26 
In Example 6, we showed that x2dx = -. Therefore, from Definition 4, 3 

1 

O n  the basis of our  earlier discussion, we now'give another definition 

Definition 5 : If f(a) exists, then 

From this definition, j x2 dx = 0. 
I 

You may now try the following exercise. 

E5) Evaluate the following definite integral, as the limit of a sum. 

Evaluating a definite integral from the definition by actually finding the limit of a 
sum, as  was done in Section 8:4, is usuauy quite tedious and frequently almost 
impossible. 

In the following section we state the result which completely avoids the use of upper 
or  lower sums. This result is known as the "Fundamental Theorem of Integral 
Calculus' 

8.5 FUNDAMENTAL THEOREM OF INTEGRAL 
CALCULUS 

This theorem is "Fundamental" since it expresses the integral in terms of an 
antiderivative and establishes the key link between differentiation and integration. 
But before we state the theorem we first need t o  give some properties of the definite 
integral. 

Simple Properties of Definite Integrals 

P I : If t I \  the constant function with f(x) = k on [a, b], then 



Calculus 

Example 7 : Evaluate 1 4 dx 
- 3 

Solution : Applying PI 

Note that, if k > 0 in PI, then this calculation gives the area of a rectangle of height 
k and base b-a. 

h 

P 2 : If 1 f(x) dx exists and k is any real constant. then 
1 

Here if f(x) = 1, then we get P1 as a particular case of P2. 
3 

Example 8 : Evaluate 14x'  dx. 
I 

Solution : Applying P2 
3 3 

26 la j4x '  dx = 4 1 xi dx = 4 - (from Example 6) = 7 
I I 

3 

h I1 

~ ' 3  : If f(x) dx and 1 g(x) dx exists, then 
I I 

Note the similarity of the properties P2 and  P3 to limit Theorem 1 of Unit 6 on the 
limit of a function multiplied by a constant and the limit of the sum or  difference 
of two function. 

Let us now d o  the following example. 

3 

Example 9 : Use the result of Example 6. and the fact that f x dx = 1 to  
I 

3 

evaluate1 (3x"5x+2) dx. 
I 

26 Solution : In Example 6, we have shqwn that x' dx = - 
Using P2 and P3 we get, I 

3 ' 

P 4 : If 1 f(x) dx, i f(r) dx and i f(x) dx exists,, then 
a a c 



b c b 

.,f f(x) dx = .,f f(x) dx + ,f f(x) dx where a < c < b 

5 .  

Applying P4 to \ 4 dx, we can write it as 
-3 

5 4 

\ 4 d x =  \ 4 d x +  4dx, because - 3 < 4 < 5 .  
-3 -3 

5 

i 
Now, \ 4 dx = 4 [4-(-3)] + 4 (5-41 

-3 

= 4.7 + 4 = 28 + 4 = 32. 
which is the required result. 

P 5 : If \ f(x) dx exists on a closed interval containing the three real numbers, a, 

b and c, then 

regardless of the order of a, b and c. 
5 

That is, the ht@ 4 dx taken above can also be evaluated as a sum of 
-3 

integrals. 

f 4 dx + j 4 dx = 4 (6- (-3)] + 4[5-61 = 4.9 - 4 = 32. 
-3 6 

b b 

P 6 : If \ f(x) dx and \ g(x) dx exists, and if f(x) r g(x) for all x in [a, bl, then 
a a 

To illustrate P6, consider f(x) = x2 and g(x) = x. Now, we know that x2 1 x.+ x 
in [1,3]. 

3 3 

Also, /x2 dx = 9 (ref. Example 6).and \x dx = 4 (ref. Example 9) which shows 
1 1 

3 3 

that \x2  dx ;. \ x  dx. 
1 1 

P 7 : ~ u ~ p o &  that the function f is continuous on the closed interval [a, b]. If m 
and M are respectively the absolute minimum and absolute maximum values of f 
on [a, b) so that 

m 5 f(x)'= Mfor a x 5 b,'then 

Exempie 10 : Apply W to find a closed interval containing the value of 
4 

Sdutioa : If f(x) = x3-6$+9xf 1 then it can be easily checked that f has a minimum 
value 1 at R = 3 and maximum value 5 at x = 1. The absolute minimum 



1 value of f on b, 41 is 1, and the absolute maximum value is 5 (Ref. Unit 7). Taking 

m = 1 and M = ,5 in P 7, we have 
4 

1 1 l (4  - 3 5 (x3-6x2+9x+1) dx s 5 (4 - T )  
In . 

7 35 Therefore, the closed interval [2, contains the value of the definite integral. 

You can now do these exercises easily. 

E6) Evaluate the following definite integrals. 

E7) Evaluate the given definite integrals by using the following results : 

e) [ (cosx + 4)2-dx 

We now give the statement of the fundamental theorem of integral calculus. 

We shall not be giving you the proof of this theorem as it is beyond the scope of 
this course. 

~heokem 2 : Iff is a continuous function defined on [a, b] and F is an antiderivative 

of f, that is, if F'(x) = f(x) for all x E [a, b], then 
h 

Note that the fundamental theorerb does not specify which antiderivative to use. 
However, we know that if F1 and F2 are two antiderivatives off on [a, b] then they 
differ by a constant (see Section 8.2) that is, F, (x) = F2 (x) + c, so 

F,(b) - F,(a) = [F2(b) + c] - [F2(a) + c] = F2(b) - F2(a). 

The c's cancel. Thus, all choices of F give the same result. 

We now illustrate this theorem through some examples : 
3 

Example 11 : Evaluate 1 x2 dx. 
1 

Solution : Here f(x) = x2. An antiderivative of x2 is 3. So, we choose 

x3 F(x) = 3-, and then using the theorem, we get 



Example 12 : Evalucte 1 (x3-6x2+9x+ 1) dx 
In 

Solution : 
A A 4 4 4 

(Using the antiderivative of each of the integrand.) 

Let us look at few more examples. 
i 

2 

1 Example 13 : Evaluate 1 - dx. 
1 x4 

1 1  d 1 -3 Solution : An antiderivative of -is - since - ( - x ) = - 1 (-3)xd4 = x - ~  
x4 3x3' dx 3 

~ e n c e ,  

lrlz 

Example 14 : Evaluate 1 (ex dx - cos x) dx 
0 

= - 1 - 1 ewn - 2. 
C 

How about doing some exercises now? 
- - 

~ 8 )  Compute the following integrals : 

E9) Evaluate the following integrals : 



- 

calculus E10) Fvaluate the follow~ng Integrals: 

m12 m 
1 

a) J (2420s x) dx b) 1 (3 cos x- - 2 sin x) dx 
0 - m/2  

We end this unit by giving summary ,of what we have done in it. 

-- - - - - - 

8.6 SUMMARY 

In this unit we have covered the following points. 

1) Definition of an antiderivative of a function. 

2) Meaning of an iiitegral of a function. 

3) Indefinite integral and its general properties. 

4) Introduction of the definite integral as the limit of a sum. 

5) Statement of simple properties of definite integrals. 

6) Fundamental theorem of integral calculus. 

n 

E4) Lower sum = lim h f(xi-,) 
n-Pw 1= 

= lim 2 '$ [n2 + 4(i- 1)' + 4n(i-1) ] 
xi3 



b) -8- Take h = 2 and use the formula for the sum of the square of the first 3  n 
n natural numbers. - 

ElO) a) n-1 ; 8 b) g ; IT2 
C) r - 3 ;  d) .3x - sin -x 
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9.1 INTRODUCTION 

In Unit 6, we developed techniques of differentiation which enable us to 
differentiate almost any function with comparative ease. Although, integration is 
the reverse process of differentiation as we have seen in Unit 8, yet integration is 
much harder to cany out. Recall that in the case of differentiation, if a function is 
an expression involving elementary fun'ctions (such as xr, sin x, ex, ...) then, so is 
its derivative. Although many integration problems also have this characteristic, 
certain ones do not. Hoiever, there are some elementary functions (e.g. e 3  for 
which an integral cannot be expressed in terms of elementary functions. Even where 
this is possible, the techniques for finding these integrals are often complicated. For 
this reason, we must be prepared with a broad range of techniques in order to cope 
with'the problem of calculating integrals. 

In this unit we will develop two general techniques, namely, integration by 
substitution and integration by parts for calculating both indefinite and definite 
integrals. We will also discuss their application for the integration of various classes 
of elementary and trigonometric functions. 

Objectives 
After reading this unit you should be able to : 

compute integrals of functions ping standard integrals, 
use the method of substitution for integration, 
use the method of integration by parts for integration, 
compute integrals of various elementary and trigonometric functions. 

9.2 STANDARD INTEGRALS 

In many cases a function is at once recognised as the derivative of some other 
function and thus can be integrated easily. Such integrals are known as Standard 
Integrals. We now list such standard integrals for ready reference in Table 1. We 
shall be making use of these integrals every now and then while evaluating many 
more integrals. Before we give these integrals let us mention that throughout the , 
discussion in this unit we shall be denoting the constant of integration by c. 

[t is important to note that when n f -1, the integral or xn is obtained on increasing 
the index n by 1 and dividing by the increased index n+l.  Thus, for example, 

and 




