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7.1 INTRODUCTION 

In Unit 6, we obtained derivatives of various types of functions and also derived 
rules for obtaining these derivatives. In this unit the main emphasis will be on the 
applications of' derivatives. 

In all branches of science we often face problems like : (i) How can we find accurate 
values of a function f corresponding to given values of x? (ii) How can we find the 
maximum and minimum values of a function f in a certain domain? A simple way 
of tackling such problems is through the application of differentiation. Consider, for 
instance, the first question above. One of the ways of calculating functional values 
to a certain degree of accuracy is through the expansion of the function as in a 
power series. The method of Maclaurin expansion is one such technique, which has 
been explained in this unit. We shall also explain the process of finding second 
derivatives, the maxima and minima of a function and of tracing a given curve. We 
shall also discuss functions of two variables. 

To start with, we have talked about the problem of finding tangents and normals 
to a given curve, which are geometrical applications of differentiation. 

Objectives 
.After reading this unit, you should be able to 

write the equation of the tangent and the normal io a given curve at a given point, 
compute the second and higher order derivatives of a given function, . 
write the power series expansion of some functions, 
compute the maxima and minima of various functions, 
identify and draw the graphs of some significant curves, 
find the first and second order partial derivatives of a function of two variables 
given in explicit, implicit or parametric form. 

7.2 TANGENTS AND NORMALS 
You have already studied in Unit 6, that if' a curve is given by the equation 
y = f(x) where f(x) has a derivative f'cx) at every point in the domain of f, then 



the derivative at a point P of the curve is the slope of the tangent to the curve at 
the point P (see Fig. 1). Thus, it is now simple for \is to find the equation of the 
tangent at any point of the curve by using the point slope form. 

Fig. I 

7.2.1 Tangent to a Curve at a Point 
You already know from your study of coordinate geometry (Unit 4 of Block 1) that 
the equation t o  any line through a point P(x,,yl) is given by 

y - yl = m(x - x,), where m is the slope of the line. But, the slope m of the 

dy tangent at P(xI,yl) to  the curve y = f(x) is the value of - at (P(x,,y,). This slope 
dx 

can also be written as - dy or ( -) . Therefore, you can at once write down the 1 d x ,  

equation to the tangenf PT in the form 

as illustrated in the following example. 

Example 1: Find the equation of the tangent to  the circle 
x2 + Y2 = 25, at the point (3.4). 

Solution : It is clear that the point (3,4) lies on the given circle. The equation to 
the tangent at  (3,4) will be 

Differentiating x2 + y2 = 25 with respect to  x, we get 

Therefore, the equation t o  the tangent is (y-4) = 4 (x-3), which on 
4 

simplification becomes 3x + 4y = 25. 

In a similar way, we now define the normal to a curve a t  a point. 

7.2.2 Normal to a Curve at a Point 
We again recall from Unit 4 that the slope of the normal line a t  a given point is 
thc negative of the reciprocal of the slope of tangent line at  that point. 

Appliralions of ViFfrrenlial Cslculur 



The normal at a point P to a curve is defined as the straight line through P which 
is perpendicular to the tangent to the curve at P. If PT is ihe tangent at P as in 
Fig. (2), then PN which is perpendicular to PT through P is the normal at P. 

Fig. 2 

You know from coordinate geontetry (Unit 4) that two straight lines having slopes 
m and ml, respectively are perpendicular to each other iff mml = -1. Therefore, 

1 if the slope of the tangent PT is m, then the slope of the normal, PN, is --. In 
m 

other words, the slope of a normal to a curve at a point is given by - where 
dy/dx ' 

dy 
- represents the slope of the tangent to the curve at the same point. 
dx 

Thus, you can write down the equation of the normal PN as 

For example, the equation of the normal at (3,4) to the circle x2 + y2 = 25 of 
Example 1 is, 

which is 3y - 4x = 0. 

You can now try the following exercises. 

El) Find the equations of the tangent and the normal to the curve y = 4x - x2 
at (1,3). 

, t 2) Find theequations of the tangent and the normal to the following curves at 
P(xI,Y,). 
a) x2 + 'y2 = a2. 

b) xy = kZ. 

In Unit 6 you have already learnt to differentiate' a fuqction when its equation is 
given in parametric form. Let us now obtain the equations of tangents and normals 
for such functions. 



7.2.3 Tangents and Normals in Parametric Form 
Suppose the equation of the curve is given in terms of the parameter t in the foim 
x = +(t) ; y = *(t) 

Therefore, the equation of the tangent at P (t = t,) is 

Similarly, the equation of the normal at P (t,) is of the form 

as illustrated by the following example. 

Example 2 : Find the equations of the tangent and the normal at 0 = 3 to the 3 
curve given by x 2 asin 0, y = acos 0. 

dy Solution : Here, = a cos 8 - = -a sln 0 
d0 d0 

dy Therefore, - = - asi", = -tan F) 
dx acos 0 

Also, x = a sin 1 = 2.J and = a cos = a. 
3 2 3 2 

.'. , the equation of the tangent at 0 .= 3, is 7 

and the equation of the normal at 0 = x, is 3 

On the similar lines you can try .these exercises. 

E3) Find the equatlon of the tangent and the normal at t = 2, to the curve 
2 x = at , y = 2at 

E4) -Find the equation of the tangent and the normal at 0 = 3, to the curve 
4 

x = asin 0, y= bcos 8. 

- -  - - - -  - - - - - - - -- - - - - - 

dy Until now we have been talking about -, that is, the first order derivative of y 
dx 

with respect i o  x. In the next sectlon we shall talk about the higher order derivatives 
of y. 

7.3 HIGHER ORDER DERIVATIVES 

dy If y = f(x) is a differentiable function of x, its derivative -- is itself a function of x. 
dx 

dy d dy d2y If - is again differentiable, we denote its derivative - (- ) by - 
dx dx dx dX2' 

pronounced dee two y by dee x two. This is called the second order derivative or 
sifnply second derivative of y with respect to x. It is also denoted by fr(x), fi2)(x), 

d3y y, or vrr. Similarly, if 9 is differentiable we differentiate again and get - = 
dx2 dx3 

fi3)(x). If we can continue to differentiate the function, we successively get, 
*4) (x). ... . ...fin), and so on. These are also denoted by y3,-y4 ,... . ... yn etc., and are 



called respectively, the third derivative, fourth derivative and nth derivative of 
Y = f(x). For obvious reasons. we call this successive differentiation. In particular 
the derivative of y = f(x) of order n, evaluatei at x = a, is denoted by Ynlx=a  or p ) ( a )  
or yn(a). Consider the following examples now. 

Example 3 : 'If = 3x5 - 4x3 + 2x2 - 8, find the derivatives of y upto 3rd order. 

d2y Example 4 : If x = at2, y = 2at, find 3 and -. 
dx dx2 

dy dyldt Solution : We know that - = - 
dx dxldt ' 

dy dy . .2a - 1 Here - = 2a, = 2at. Therefore, - = - - - 
dt dt dx .2at t 

d2y d d~ d 1 d 1 dt Also, - = - ( - ) = ( ) = ( - ) . - (chain rule) 
h 2  dx dx t dx 

You may now try this exercise. 
- -  

E5) Find the derivatives upto third order for the following functions: 
a) f(x) = J F l  

c) y = sin x 

d) y = x21n x 

Let us now find the nth order derivative, assuming it exists in some simple standard 
cases. 

(1) y = xn : In this case 

y1 = n xW1 
y2 = n(n'l)~"-~ 
y3 = n(n-1) (n-2)~"~ and so on. 

Here, we observe that y,, y2, y3 follow a particular pattern and therefore, we can 
guess the nth order derivative y, in the form 

yn = n (n-1) (n-2) ... ... ..... (n-n;l)xn-", where nL1 denotes (n-1) 
= n (n-1) (n-2) ........... 1 

In case, n is a positive integer we have a formula 

* (xn) = n! that is, the nth derivative of xn is a constant, namely, n! and the 
dxn 
(n+l)th derivative along with the other higher derivatives are all zero. 

In case n = -1, we get 

yn = (-1) (-2) ..... (-n)x-'-" 



1 In particular if we have y =In x. Then we know yl = y, and 

- (n- 1) ! 
making use of the above formula we get, y, - 

xn 

(2) y = em, where a is a constant : 

.......... Here, yl = aeax, y2 = a2eax, y3 = a3e> 

From this pattern, we can guess that, 

dn yn = ane". Thus, - (e") = ame". 
dxn 

d" In particular, if a = 1, then - (ex) = ex. This shows that the derivative of ex of 
dxn a 

any order is again ex. 

(3) y = sin(ax+b), where a and b are arbitrary constants. 

NOW, yl = acos(ax+b) = asin(ax+b+ ) [ because sin ( x  + 8 ) = cos 8 ] 
2 2 

y2 = a2cos(ax+ b+ 3 ) = a2sin(ax+ b+ x + 1) = a2sin (ax+b+ ), 2 2 2 2 

y3 = a3sin(ax+p+ a ), y4 = a4sin(ax+b+ 4" ), and so on. 2 2 

Similarly, 9, = qnsin(ax+b+ ). 
2 

Thus, 2 sin(ax + b) = ansin(ax + b + ) 
dxn 2 

If we put a = 1, b = 0, we get, 

d" - (sin x) = sin (x + BE ). 
dx" 2 

Proceeding, similarly as in (3) above, we can show 

d" (4) ---- cos(ax+b) = ancos(ax + b + -!E ). In particular for 
dxn 2 

e = 1 and b = 0, we have (COS X) = cos(r + ). 
dxn 

(5) Let y = ax. Then, from Unit 6 you know that y can be written as y = e*" ". Thus, 
y1 = In a e?" a, yz = (lna)2-ex1n a , .......... 
From the pattern that follow, we may write 

yn = (In a)" - eX'" a = (In a)" . ax. 

Having obtained the nth derivative of some of the standard functions, you can very 
easily try this exercise. 

E6) Find the nth order derivatives of th'e following functions: 

1 
a) TG 
b) In(ax+ b) 

c) cos $ 

Mqny times you might have come across expansions of various algebraic, , 
trigonometric and exponential functions given by y = fix), in ascending integral 
powers of the variable x. For example, 

n(n-1) x2 + "("-1) ("-2) ( l ) ( l + x ) " = l + n x +  2 !  .......... 
3 !  x3 + 

(Binomial theorem) 



These expansions are all special cases of a general theorem called Taylor's theorem. 1 
We shall not be going into the details of this theorem as it is beyond the scope of 
this course. This theorem gives the expansion of f(x) in an ascending integral powers 
of (x-h) for a given h in the form 

f "(h) 
2 !  

........ ........ f"(h) f(x) = f(h) + fl(h)(x-h) + -- ( ~ - h ) ~  + + - (x-h)" + 
n !  

A particular form of this expansion, when h = 0 is, 

which is known as Maclaurin's expansion. It is named after Colin Maclaurin 
(16%-1740), professor of mathematics at the University of Edinburgh. The 
expansion fails if f(x), or one of i e  derivatives, becomes infinity or becomes 

1 discontinuous in the domain of x. For instance, if f(x) = f i ,  then f'(x) = - 
2J;;' 

(As x'+ 0, - -+ a). Therefore, f'(x) does not existi at x = 0, and the expansion 
2J;; 

breaks down at the second term itself. Thus; for the applicability of Maclaurin's 
expansion, its validity is essential. 

Let us once again consider the function taken in (2) above. 

Exampie 5 : Assuming the validity, find the Maclaurin's expansion for sin X. - 
' Solution : We have 

f(x) = sin x, and f(0) = 0 

F1)(x) = cos x, F1)(o) = 1 

fi2)(x) = -sin x, fi2)(0) = 0, 

F3)(x) = -cos x, P3)(01 = -1, 
F4)(x) = sin x, F4'(0) = 0, 

F")(x) = cos x,  F5)(o) = I ,  

and so on. 

hence, we have 

sin x= f(0) + x f(') (0) + 2 f( ')(~) + 3 f(') (0) + ........ 
2 P 3 !  

x5 x7 $ + -- + ........ sin x= x - - 3 !  5 !  7 !  

as the Maclaurin's expansion of f(x). 

You may now try the following exercises. 

E7) Establish the followi?g expansions assuming that expansion i s  valid for the 
function E given by 

x2 x7 Xn + ...... for all x. a) I ( x ) = e X = l  + x +- t- + ....... +- 2 !  4 !  n !  

x2 x4 ....... ....... 1,) f(x) - cos x = 1 - + - - + 3 c o s x  + for all x. 
2 !  4 !  n !  2 

E8) a) Expand tan-'x using Mablaurin's expansion, assuming the validity of the 
expailsion unto 31d degree in x. 



x2 Appliertiom d Mereatid Cakulus 
b) Given ln(l+x) = x - - + 2 - 2 + 2 ! 3 ! 4 ! """"' 

Obtain the expansion for - by repeated differentiation of the given 
(1 + x ) ~  

function. 

In many applications it is necessary to find the largest or smallest values of some 
particular function. That is, for a given function f with domain D, find those points 
in D where f assumes its greatest or least values, and then evaluate f at these points. 
For instance, it may be required to determine a route between two points that can 
be travelled in minimum time. Such problems are called optimisation problems or 
problems of finding maxima and minima of a given function in a given domain. Let 
us now study these problems. 

7.4 MAXIMA AND MINIMA 

We shall first approach the concept to be developed from a geometric point of view. 
We shall then formulate analytic definitions and from these obtain results 
analytically. 

7.4.1 Increasing and Decreasing Functions 
You know that we can look at the derivative of a function in two different ways: 

i) as the slope of a curve at a point on its graph and the other, 
ii) as the instantaneous rate of change. 

.Let us see if we can conclude anything about the behaviour of the curve y = f(x) 
at a point on it from these two aspects of the derivative. 

Consider a graph with equation y = f(x) as in Fig. 3, at every point of which there 
is a unique tangent with a finite slope. 

Fig. 3 

Now if we start at point A and proceed from left to right along the graph, then the 
'graph rises fram A to B, falls from B to C, rises from C to D, and continues, to 
rise. If we draw a tlMgent at any point PI between A and B (where the graph is 
rising) this tangent makes an acute angle with the x-axis and hence its slope is a 

dy positive number. Hence, - (being this slope) at that point is positive. And it is 
dx 

dy clear that a t  m y  point on thegraph for which - is positive, the graph, is rising. 
dx 

On the other hand, at P, between B and C (where the graph is falling), the tangent 
makes an obtuse angle with the x-axis and hence the slope will be a negative number 

dy and hence - will be negative at that point. So that at any point on the graph for 
dx 

dy which - is negative, $he graph is falling. 
dx 



Now at the point B, where the graph is neither rising nor falling, the tangent is 

dy parallel to the x-axis; consequently its slope is zero and hence - = 0 at that point. dx 
Such is also the case at points C and D. The three points B, C, D then have the 
common geometric property. We say that the graph is stationary at such points and 
these points are called stationary points. 

To summari'se we can say that, given a function y = f(x) defined in some domain, 

dy i) if - > 0 in any interval I of the.domain, then f(x). is an increasing function 
dx 

of x in I (i.e. y increases along with x). 

dy ii) if - < 0 in the interval I ,  then f(x) is a decreasirig function of x in I (i.e. y dx 
decreases when x increases). 

dy iii) if - = 0, at some point in the domain, then at that point f(x) is neither dx 
increasing nor decreasing. 

Let us now do an example. - 
Example 6 : Find the range of values of x for which the function y = x2 - 4x + 4 
increases with x. 

dy Solution : It is required to find the interval in which - > 0. Differentiating the dx 
given function with respect to 

Now, 2(x-2) is positive for all x > 2, thus, function is increasing. 

dy If x < 2 then - is negative and function decreases, and when x = 2, it is stationary. dx 

Therefore, the function increases for all x > 2. 

You may now do these exercises easily. 

E9) Find the stationary values of 16x - 4x3. 

E10) Find the range of values 0f.x for which the function f(x) = (x-3)(x-1) is 
(a) increasing (b) decreasing (c) has stationary values. 

E l l )  Describe the behaviour of the function y =sin x in the interval (0 s x 5 a). 

dy Thus, you have seen above that the sign of first derivative - plays an important 
dx 

role in determining the nature of the curve defining a function y = f(x) in a certain 
domain. 

7.4.2 Concavity 
Let us now study the role of second derivative 3 in determining the behaviour of 

dx2 
the curve y = f(x) in a given domain. 

d dy Now, what happens if 3 > 0, at the point P? This means that ( ) > 0, 

dy 
dx2 

that is, - is increasing at P. Then, the slope of the graph is increasing at P, since 
dx 

dy - is the slope of the graph. 
dx 

You look at Fig. 4(a) and geometrically try to visualise the general shape of a g3p.h 
at point P where the slope is increasing. Clearly, the tangent at a point P is turnlng 
anti-clockwise as the point moves along the curve from left to right and takes the 
position PI, P2, P3 and P.,. Also the tangent lines at all these points lie below the 





.7.4.3 Criteria for Extreme Values 
A knowledge of maximum and minimum values of a function is of great help in 
drawing its graph. We now obtain a criteria by which these values can be determined. 

We begin with an example 

Example 7 : Given f(x) =* - -  x2 - 3x + 5; find when f(x) increases, when it 
3 

decreases and when it is stationary. 

Salutian : We first find fl(x) = x2-2x-3 = (x+l) (x-3). 
It is clear that fl(x) > 0 when x < -1 or x > 3..f1(x) < 0 when -1 < x < 3 and 
f'(x) = 0 when x = -1 or x = 3. 
If you look at the graph of f(x) (see Fig. 6) you will notice that 

Fig. 6 

i) f(x) increases from x = - co to x = - 1 

ii) f(x) is stationary at x = -1 

iii) f(z) decreases from x = -1 to x = 3 

iv) f(x) is stationary at 'x = 3 

v) f(x) increases from x = 3 to x = +m 

The points P, and P, in Fig. 6 are of special interest and importance. The graph is 
stationary at both these points. Since at PI the graph stops rising and starts to fall, 
PI iscalled a maximum.point (point of maxima) of the graph. Similarly, P2 is called 
a minimum point (point of minima) of the graph, since at P2 the graph stops falling 
and starts to rise. PointsaP, and P2 are also called extreme points. The value of the 
function f at P, is called a maximum value of f(x) and the value o f f  at P2 is called 
the minimum value of f(x). Also, the abcissas corresponding to the points P, and 
Pz are called the critical values of f. In Example 7, the numbers -1 and 3 are the 
critical values of f .  
Nate that a maximum point is not necessarily the highest point of a graph nor a 
minimum point necessarily the lowest. In fact a graph may have more than one of 
each. These are called the local maxima or local minima of a function. 

Let us once again consider Example 7 and see what does the geometrical facts 
mentioned above formulate analytically? 
We have, f'(x) -- (x+l)(x-3). Thus fl(x) = 0 for x = -1 or 3. ~ h e s e  numbers -1 
and 3 divide the x-axis into three intervals (see Fig. 7). 

I 1 , - 1  11 1-1,3[, 111 ]3,%[ 



Fig. 7 

The sign of f'(x) remains the same throughout in each of these intervals. In 
I, fl(x) > 0; in 11, fl(x) C 0; and in 111, fl(x) > 0. This shows that as we go from 
I to I1 through x = -1, f'(x) is +, 0, -, that is, f(x) is respectively increasing, 
stationary, decreasing, and therefore f(-1) is a maximum. 
Similarly, as we go from I1 to I11 through x = 3, fl(x) is -, 0, + that is, f(x) is 
respectively decreasing, stationary, increasing, and therefore f(3) is a minimum. In 
general, given a continuous function y = f(x) with fl(x) finite at every point of the 
graph, we have the following test for finding maxima and minima. 

Test 1 : If f'(x) = 0 at a point P of the graph and 

i) Iff' changes sign from positive to negative in crossing the point P, then f has a 
maximum value at P. 

ii) Iff '  changes sign from negative t o  positive in crossing the point P, then f has a 
minimum value at- P. 

Let us now consider this example. 

Example 8 : Test the function f(x) = x3, for maximum and minimum values. 

Solution : We have, fl(x) = 3x2 = 3(x-0) (x-0). Thus fl(x) = 0 gives x = 0 as the 
only critical value. The point x = 0 divides the x-axis into two intervals (see Fig. 8). 
I 1-00,0[, I1 ]0,+00[ 

/ 
If x < 0, then f'(x) > 0 

Fig- 8 
If x = 0, then fl(x) = 0 
If x > 0, then fl(x) > 0 -  

Hence f(x) increases for x < 0, is stationary at x = 0, increases for x > 0. Hence 
f(x) has no maximum or minimum values. The graph y = x3 has no maximum or 
minimum points but is stationary at (0,O). 

So far we have seen the role of sign of f'(x) in obtaining the maximum and minimum 
values of a function y = f(x). We shall now see how the sign of f"(x) helps in 
obtaining the maximum and minimum values of f(x) 

Consider a continuous graph, y = f(x), as in Fig. 9, with fl(x) finite at every point 
of the graph. 



It is clear that function changes from increasing to &creasing as we cross points B 
and D. Thus, f' changes sign from positive to negative. Whereas, at points 
A, C, E ,  it changes from i decreasing function to an increasing one and 
consequently f' changes sign from negative to positive. Since the graph is continuous 
dy - must vanish at each of the points A, B, C. D and E. In other words, these are dx 
the stationary points of f. 

Further, you may notice that the function is concave downwards at points which are 
very close to B and D, and it is concave upwards at points close to A, C and E. 

Now at points B and D since f' = 0 and while crossing them f '  changes sign from 
positive to negative, f has a maximum value. Then at these points f"(x) must be 
negative. For if F(x) > 0, then fl(x) is increasing at these points with increase in 
x. But, f'(x) = 0 at these points so that, f'(x) must have increased from negative 
value to zero and then to positive value which determines a point of minima. Hence 
it is a contradiction since f has a maximum value at B and D. Thus, at these points 
fl'(x) < 0. 

Similarly, at points A, C and E where f' changes sign from negative to positive and 
hence are the points of minima, f"(x) > 0. We now summarise the above discussion 
in the form of following test. 

Test 2 : Let y = f(x) be a continuous function with f"(x) finite at every point of the 
graph y = f(x). Let f'(x) = 0 at a point P of the graph, then 

i) If F(x) < 0 at P, then, P is a point of maxima. 

ii) If f"(x) > 0 at P, then P is a.point of minima. 

The above test for maxima and minima is very useful and easy to apply. In the 
cases where, f'(x) = 0 and also P(x) = 0 at those points, the test cannot be applied. 
In such cases we go in for Test 1. I 

I 
Let us now do an .example. 

Example 9 : Find the points of maxima and minima of ,the function y = x3 - 3x. 

Solution : Here; - dy - - 3x2 - 3 = 3(x:-1). dv 
dy For extreme or stationary points we must have - = 0. 
dx 

Therefore, x2- 1 = 0 gives x = + 1 or - 1. 

Wheu x = 1, 3 = 6 which is positive. 
dx2 

Thus, the function has a minimum at x = 1. 

d2y - -6 which is negative. Whenx = -1, - - 
dx2 

So, the function has a maximum at x =. ~ 1 .  
If we substitute x =. 1, in the function for y we get, 
y = l3 - 3(1) = 1 1 3  = -2 as the minimum value of f(x). But; you might have 
noticed that ( t 2 )  is by no means the lowest value of the function, because if we 
put x = -3, we get, y = -27+9 = -18 and if we put x = -4, then y = -52 which 
are much less than -2. Similarly f(-1) = 2, is not the largest value of f. 
Therefore, x = 1 is a local minimum and x = - 1 a local maximum. They are called 
local because these values pertain only to the neighbouring points. 
The highest maximum or the lowest minimum values of the function on the entire 
domain of consideration are called absolute maximum or the absolute minimum 

-- respectively. 



From the above example it is cleat that a maximum or a minimum value is also a A - d m -  

stationary value but a stationary value may neither be a maximum nor a minimum 
value. For instance, as we have seen in Example 8, the function y = x3 has x = 0' 

i 

I 
as stationary point but a h c t i o n  does not have either a maximum or a minillium 

d=Y at x'= 0. In this case - = 6x = 0 at x = 0. Such points are called points of 
dxZ 

Let us now look at another example. 

Example 10 : Find the greatest and least values of 
y = 3x4 - 2x3 - 6x2 + 6x + 1 in the interval 10.21. 

dY 1 Thus, - = Oforx= 1, -1, -. dx 2 

The value x = -1 will not be considered because it does not belong to the intervall[0,2]. 

d=Y d2y 1 Now, ->Oatx=  land,-<Oatx = -. 
dx2 dx2 2 

1 Thus, x = 1 is a point of minima and x = - is a point of maxima. 2 

and f(0) = 1, f(2) = 21 

We notice that the points x = 1, 11'2 are the extreme points of the function in the 
given interval but you may note they are the points of local minima and maxima 
respectively. In fact, the function over the entire interval [02] has least vaiue 1 at 
x = 0 and greatest value 21 at x = 2. Hence, these are the points of absolyte minim- - .  
and absolute maxima respectively. 
Thus, we make the following remark. 

Remark : The greatest (miuimum) and least (minimum) values of a continuous 
function f(x) in any interval [a,b] are ;ither f(a) and f(b) or are @Ven by the values 
of x for which fl(x) = 0. In case the function f is increasing in the interval [a,b\l and 
a < b, then we can straightaway say that f(a) is the minimum value of f and f(b) 

-is the maximum value of f in the interval [a,b]. 

In this unit we will concentrate only on local maxlmum and local minimum thus 
dropping the term local. 

You may now try these exercises. 

E13) Find the points of maxima or minima of the following functions. 

a) f(x) = & - 3x2 - 12x + 5 

b) f(x) = 12 + 5x - 22 
C) f(0) = acos20 + bsin20 (a > b) 

E14) Find the points of maxima and minima of the functipn y = x4.. 

E15) The sum ot two numbers is 40. Find the maximum value of their product. 

- - 

dy d2y After learning the behaviour of a function y = f(x) at points where or 

changes sign, we now look at its behaviour at points which are far away from the 
origin. 



7.5 ASYMPTOTES 

Let P(x,y) be a point on the graph of a given function y = f(x) and let L be a given 
non-vertical line. The distance d from P to L is measured along the line through P 
perpendicular to L (see Fig. 10). 1 

'I' 

0 

1, I 
I 

I 

x D  

Fig. 10 

This line L is said to be an asymptote of the curve if as the point P on the curve 
tends to infinity along the curve, the perpendicular distance of P from the straight 
line tends to zero. In other words the line L is an asymptote of the curve if d + 0 
as x + a or  as x -, - a. A curve may or may not have an asymptote. For example, 
you know that for the function, y = In x, In x + - as x + 0 (as in Fig. 11). In 
this case we say that the curve approaches the negative y-axis asymptotically. 

Y 

9,  

A 

y=!nx 

b 
X, 

Fig. 11 

If the asymptotes of the curve are parallel tp either axis, you can spot them by 
inspection almost immediately. 

X' . Here y + 1, as x + +m or x + -a. For example, if y = - 
x2+ 1 

Therefore y = 1 is an asymptote which is parallel to the x-axis (Fig. 12). 
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Fig. 12 

Take another example: 

' 3x+2 Writing it as y = 3 - - Y =x+3. x+3 , we see that y + m, as x + -3. Rewriting 

w e s e e t h a t x +  masy+- .3 .  the given function as x = -3 - - 
y-3 ' 

Therefore, x = -3.and y = 3 are the asymptotes. 

You may now try this exercise. . 

E16) Find the asymptotes for the following functions: 

An easy method of finding asymptotes to a curve when they exist is 'based on the 
theory of equations. We shall give only the rules of manipulation. 

(1) Arrange the given equation in descending powers of x. Equate to zero the 
coefficient of the highest power of x provided this is not a constant. Solving the 
resulting equation, you will get the asymptotes parallel to the x-axis. 

For example, consider the function given by y2(~2-a2) = X. Write it as 
x~~~ - x - y2a2 = 0. The highest power of x is. 2 and the coefficient of x2 is y2 

which is not a constant. Therefore, y2 = O that is, y = 0 gives the asymptote parallel 
to the x-axis. 

(2) To get the asymptotes parallel to the y-axis, arrange the given equation in 
descending powers of y and equate to zero the coefficient of the highest power of 
y. provided it is not a constant. 

For example, suppose y2(x-b) = x3 + a3. To find the asymptote parallel to the 
y-axis, we write the function y2(x-b) - x3 -a3 = 0. The highest power of y is 2 
and the coefficient of Y2 is x-b. Thus, the equation of the asymptote is x-b = 0 
or x = b. 

(3) Asymptotes that are not vertical or horizontal may be more difficult to 
determine. If you lo& at Fig. 10, you will observe that the line L is an oblique 
asymptote to a given curve. Suppose that the equation of the line L is written in 
the form y = mx + c. To find this oblique asymptote, first substitute mx+c for y 
in the given equation. Then arrange the given equation in descending powers of x 
and equate to zero the coefficients of two highest powers of x. Solve these two 
equations for m and c. Substitute the values of m and c in y = mx + c to get the 
equation of the asymptote. 



Calculus Consider for example, y3 = x2(x-a). Put y = mx + c in the equation to get 
( m x + ~ ) ~  = x2(x-a). Coefficients of the two highest powers of x are coefficients of 
x3 and x2. Equating them,to zero we get m3 - 1 = 0 and 3m2c + a = 0. On solving 
the two equations we find that m = 1 is the only real root. The corresponding value 

of c is c = 3. Therefore, the asymptote is y = x - 2. 3 3 
You can now do the following exercise easily. 

E17) Find the asymptotes of the following curves. 

Now, that we have already learnt the methods of finding the maxima, minima of a 
given function at a point and the equation of an asymptote to a given curve. We 
are now all set to draw the curve represented by a given equation. The process of 
drawing a curve is called curve tracing. 

7.6 CURVE TRACING 

The object of curve tracing is to find the general appearance of a curve without 
plotting lots of points on the graph and avoiding laborious numerical calculations. 

For tracing a curve whose equation is given in the rectangular Cartesian coordinate 
system, that is, in terms of x and y, you must remember the following properties 
of curves. 

PI: If the equation remains unchanged when x is replaced by -x. then the curve is 
symmetric about the y-axis. 

P2: If the equation is unchanged when y is replaced by -y, then the curve is 
symmetric about the x-axis. 

P3: If the equation remains unaltered when x and y are interchanged, then the curve 
is symmetric about the line y = x. (That is, the line passing through the origin 
and making an angle of 45" with the positive direction of the x-axis.) - 

Pil: If the equation remains linaltered when the signs of both x and y are replaced ' 
by their opposites, the curve is symmetric about the origin that is, there is a 
symmetry in the opposite quadrants. 

These four points will help you to find the symmetries of the curve. 

After the given function has been tested for symmetries the following steps are to 
be performed. 

1) Find the values of x for which y is not defined (imaginary). The curve does not 
exist for these values of x. 

2) If there is no constant term in the equation, the curve passes through the origin. 

3) Find the points where the curve cuts the axes. That is those values of x and y 
for which the points (x,O) and (0,y) lie on the given curve. 

4) Find those values of x for which y = 0 or  y tends to + 
5) Find the asymptotes to the given curve, if any. 



6) Find the points of maxima and minima of the given curve to get an idea about 
the shape of the curve. 

We will now take up a few simple standard cases of curve-tracing. 

A) Witch of Agnesi (named after the Italian mathematician Maria Gaetna Agnesi 
(1718-1799)). The equation to the curve is given by 

x~~ = 4a2(2a-y). 

i) . The curve is symmetrical about the y-axis. 

ii) The CUNe does not pass through the origin, since (0,O) does not satisfy it. 

iii) It cuts the y-axis at y = 2a (putting x = 0). It does not intersect the x-axis. 

iv) x2 is negative for y > 2a. Therefore x is imaginary. Hence the curve does 
2a- y 

not exist for y > 2a. Writing x2 = 4a2 ( - ), we see that x = -t 03 as 
Y 

y 4 0. Therefore, y = 0 is an asymptote. 

v) There is a m a ~ m a  at x = 0 and points of inflexion are 

vi) When y decreases from 2a to 0, x increases from 0 to m. Thus, the curve 
obtained is as in Fig. 13. 

Fig. 13 

B) Cissoid of Diocles (after the Greek mathematician Diocles around 180 BC). The 
equation of the curve js 

i) The curve is symmetric about the x-axis. 

ii) The curve passes through the origin. 

iii) Clearly, 2a-x '= 0 is the asymptote. 

iv) The equation of the curve can be written as y2 = d- which shows that 
2a-x ' 

for values of x > 2a, y is imaginary that is, the curve does not exist for 
values of x > 2a. Similarly, the curve does not exist for negative values of 

' X. Also as x --+ 2a, y + a. 



v) The tangent at the origin is giyen by y2 = 0 or y = 0. Thus, the x-axis is 
the tangent at the origin. 

dy vi) - > 0 for x > a. Therefore, the function is increasing in the semiclosed 
dx 

T'hc rangcnt at the origin can also interval, [O,a[. 
hc ohtaincd by cquating the 
Iowc\l ordcr  tcrm t o  rcro. The shape of the curve is as shown in Fig. 14. 

Fig. I 4  

C) Cubical parabola 

Consider the curve given by the equation y = x3. 

i) If we change y to -y and x to -x the equation of the curve does not change. 
Hence, there is a symmetry in the opposite quadrant or there is a symmetry 
about the origin. 

Fig. 15 



ii) The curve passes through the origin, the tangent at origin being y = 0 
(equating the lowest order term to zero). 

iii) The curve crosses the axes only at the origin. 

iv) As x increases from. 0 to 03,  y also increases from 0 to 03. 

v )  There are no asymptotes because the coefficients of both x3 and y are 
constants. 

dy d2y - 6 ~ ) , = ~  = 0. Therefore, origin is a point vi) - = 3 x 2 = 0 f o r x = 0 a n d  - - 
dx dx2 

of inflexion. With the above data the curve is as shown in Fig. 15. 

After studying the above examples you must have developed a good understanding 
about the curve tracing. The following exercise will help you to test your knowledge. 

E18) Trace the following curves. 

a) y = x2 

b) y = ex 

c) xy2 = 4a2(2a-x) 

So far, we have only talked about the functions of the form y = f(x), that is, about 
the functions involving only one independent variable namely, x. .In ihe next section, 
we extend our consideration to functions of two independent variables. 

7.7 FUNCTIONS OF TWO VARIABLES 

As we go ahead and define various concepts involving functions with two variables, 
you will notice that most of the concepts are easy generalisations of those for 
functions of one variable. We shall be discussing these concepts in brief. To  start 
with we give the following definition. 

Definition : A variable z is said to be a function of two independent variables x and 
y, if for each set of values of (x,y) we can determine a value of z, so that there is 
a correspondence between z and the pair (x,y). We denote this correspondence by 
the notation. 

The domain of the function is the set 

R~ = { (x,y) : x E R, y E R ) or a subset of R~ on which the function f is defined 
and real. 

For example, the domain of f(x,y) = 3x+5y is R ~ .  The domain of T(x,y) = (xy)lR 
is only positive x and positive y or only negative x and negative y. If only one of x 
or y is negative, T(x,y) will no longer remain real. Similarly, the domain of 

f(x,y) = J 8 - ( 3 ~ + 2 ~ )  is the set of all (x,y) such that 3x+2y < 8. Just as in the case 
of functions of a single variable, the concepts of limit and continuity are closely 
related for a function of two variables also. We shall study them now. 

7.7.1 Limit of a Function of Two Variables 
You may find it useful to compare the definition given here with the definition given 
in Unit 6, for the limit of a function of one variable and to note how the 

I 

generalisation has been made. 
I 

I Definition : A function f(x,y) is said to tend to a limit L as x + a and y + b, if as 
x approaches a and y approaches b,  the function f(x,y) gets closer and closer to L 

I 



and we write lirn f(x,y) = L 
;zi? 

Note that for a continuo~~s function the lirn f(x,y) as (x,y) approaches (a,b)~is the 
same as lirn f(x,y) as first x approaches a and then y approaches b. Mathematically, 

we express it as lirn lirn f(x,y) or lirn f(x,y). Similarly, first y can approach b 
y-b x-a x-a 

Y-b 

and then x approaches a ,  that is lirn lirn f(x,y) or lirn f(x,y). But, the limit L exists 
x-Aa y-b Y+b 

x-a 

only if the above two limits are equal. 

For example, if f(x,y) = 2x then 
x2+y2+1 

lim { lirn f(x,y) ) = lirn (0) = 0 = lirn f(x,y) and 
y o  x-0 Y-0 x-0 

Y-0 

lim { lirn f(x,y) ) = lirn { 2 ) = 9 = 0 = lirn f(x,y) 
x-0 y-0 x-0 x2+1 1 :z! 
Similarly, lirn f(x,y) = 2 = 1 = lirn f(x,y) 

x- 1 
Y-2 z: 

Hence the function f(x,y) has the limit 0 and 113 at points (0,O) and (1,2) respectively. 

Remember that while taking the lirn f(x,y), y is kept constant. Similarly, while 
. . x-a 

taking lirn f(x,y), x is kept constant. 
Y-b 

We emphasise once again that the concept of limit does not depend upon the value 
of f(a,b) or even upon whether f is defined at (a,b). 

We now come to  the continuity of f(x,y). 

7.7.2 Continuity of a Function of Two Variables 
Consider the function defined as follows: 
f(x,y) = x2 + y, when (x,y) # (1,l) 

= 0, when (x,y) = (1,l). 

You can easily see that the limit of the function as x + 1 and y + 1 is 2. But the 
value of the function when x =' 1 and y = 1 is defined as zero, which means that 
at (1,l) the limit of the function is not equal to the given value of the function. In 
such cases we say that the function is discontinuous at (1,l). We now give the 
following definition. 

Definition : A function f(x,y) is said to be continuous at (a,b) if the following 
conditions are satisfied: 

i) f(x,y) is defined at (a,$ * 

' ii) lirn f(x,y) = L exists 
x-a 
Y-b 

iii) f(a,b) = L that is, the limit of the function is equal to the value of the function 
at (a,b). 

Some examples of continuous functions are the following:, 

i) Polynomial functions, which are functions formed as finite linear combinations 
of non-negative integral powers of the independent variables; are continuous. 
For example, f(x,y) = 3 + '2xy + 2x2 - 3y2 is continuous for all x and y. 

ii) Functions, which are cluotients of polynomial functions are continuous except 

at zeros of the denominator. For instance, the function is continuous 

everywhere 'e~ce~t  at (0.0). A t  (0,O) it is not at all defined. 



iii) Functions obtained by taking roots, trigonometric functions, exponential 
functions and logarithmic functions are continuous except at the points where 
the functions are not defined. Some examples of continuous functions are : 

a) f(x,y) = Jw, x'+~' 5 4. 

b) g(x,y) = sin XY ( x , ~ )  f (0,O). J=' 
x +Y 

C )  h(x,y) = ~x'+P, for all (x,y). 

Before we go on to next subsection how about doing an exercise? 

E19) Determine the domain in which the following functions are continuous 

In the next section we will extend the computational rules developed so far for 
finding derivatives of functions of two variables. The derivative of a function f, of 
two variables with respect to one of the variables while the other one is kept 
constant is called the partial derivative of f. 

7.7.3 Partial Derivatives 
You will recall that in the case of a function of one variable y = f(x), the derivative 
of f with respect to x was the instantaneous rate of change of f with respect to x 

df dy and was denoted by - or -. 
dx dx 

In the same manner, the partial derivative of a function of two variables z = f(x,y) 
with respect to one of the independent variables, can be regarded a i  the 
instantaneous rate of change of z with respect to that variable when the other 
independent variable is held constant. We describe it as follows: 

Let a small change 6x in x result in a change 62 in z, keeping y constant. Since 
z = f(x,y), we can write 

z + 62 = f(x+6x, y) and 

62 = f(x+6x, y) - z = f(x+6x, y) - f(x,y) 

62 - f(x+bx, Y) - f ( x , ~ )  Therefore, - - 
6x 6x 

If this quotient tends to a limit as ex + 0, then this limit is called the partial 
6x 

differential coefficient or the partial derivative of z with.respect to x and is denoted 

a f by B. It is also denoted by f,(x,y) or - or simply f,. The derivative evaluated ax ax 

at any point (a,b) in the domain of the function is denoted by I or f,(a,b). ax (a,b) 

Similarly, keeping x as constant, we can define the partial derivative of f(x,y) with 
respect to y as 

This is also denpted by fy or fy(x,y). 

You can see that af is simply the ardiiary derivative off with respect to x, keeping 
- - ax 

Applications d Dinseatld Calcalua 



af y constant and - is the ordinary derivative of f with respect to y, keeping x 
ay 

af af constant. The partial dirivatives - and - are again functions of x and y. 
ax ay 

For example, if z = then 

az - a - a a 
ax ax (2x2) - - (5xy) + - (4y2) = 4x-5y+O = 4x - 5y. 

ax ax 
and 

a a A = 2 (2x2) - - (5xy) + - (4y2) = 0-5x+8y = 8y - 5x. 
aY aY ay. ay 
You may now try the following exercise. 

E20) Find a and a ,  'where z is given by 
ax ay 

a) z(x,y) = x4 + 3y3 b) z(x,y) = x cos y + y cos x 

C) z(x,y) = sin (3x+y) d) z(x,y) =  tan-'(^+^) 
e) z(x,y) = ex-Y f) z(x,y) = x In y 

g) z(x,y) = (x-~Y)-' 

In Unit 6 we have already learnt the method of obtaining derivative of an implicit 
function of one variable. We now extend the same ideas to obtain the partial. 
derivatives of implicit functions of two variables. 

7.7.4 Partial Derivatives of Implicit Functions 
So far, all the functions f(x,y) considered were defined explicitly in the form 
z = f(x,y). The functions of two variables x and y can also be given by an implifit 

function in x,y,z of the form xy + yz + zx = 1. If now we are required to find a. 
ax 

then we differentiate the given equation partially with respect to x keeping in mind 
that z is a function of both x and y. 

a a a a So, - (xy) + - (yz) + - (zx) = - (1) ax ax ax ax 

or, (y+x) = - (Y+z) 

y+z . and, = -- 
Y +x 

is the partial derivative of z with respect to x. 
ax 

x+z Similarly, we get = - -. 
aY Y +x 

How about trying an exercise now? 

E21) Find a and a ,  if ax ay - .  

a) x2 + y2 + z2 = 16, 

b) x2 + 3xy - 2y2 + 3x2 + z2 = 0. 

We now obtain the chain rule for the partial derivatives of composite functions. 

7.7.5 Partial Derivatives of Composite Functions 
We begin by the definition of composite function of two variables. 



: If z is a function of independent variables x and y, where x and y, in turn Applk.wr d m d C d -  

are themselves functions of a variable t ,  then z is called a composite function of t. For 
instance, if 

z = f(x,y), where x = +(t) and y = $(t) 

then, z = f[+(t), +(t)l. 

You will realise that since z is directly a function of t now, you can find $ using 

dz rules for ordinary differentiation. However, a rule for obtaining- dt will now be 

established which can be applied more conveniently to difficult cases also. 

As before, let 6x and 6y be the small changes in x and y respectively, corresponding to 
a change 6t in t and let 6z be the consequent change in z. Then, 

z + 6z = f(x+8x, y+6y) 

and 6z0= f(x+6x, y+6y) - f(x,y) 

6z - f(x+6x, Y + ~ Y )  - f(x,Y) Therefore, - - 
6t 6t 

which can be re-written as 

(we have added and subtracted f(x, y+6y)) 

Note that when 6t + 0, both 6x + 0 and 6y + Q. 

~ h u s ,  4 = lim Jk = lim ~ ( x + ~ , Y + ~ Y ) - ~ ( x , Y + ~ Y )  lim ' - 6x 
dt 8 k O  s t  8-0, 6x st-to at 

Here, we have used the fact that limit of the product = product of the limits. 

dz - df - af dx af dy Hence, we obtain that - - - - - - + - - 
dt dt ax dt ay . dt 

This rule is called the chain rule for differentiating composite functions. 

Let us now use this rule in the following example for finding the derivative of the 
given function. 

Example 11 :Find * for z = xZy + xy2 where x = at2, y = 2at 
dt 

dz On substitution - becomes 
dt 

- dz = (2xy + y2)2at + (x2+2xy)2a. 
dt 

Putting x = at2, y = 2at, 

- dz = 2at (2.at22at --I- 4a2t2) + 2a(a2t4 + 2-at2-2at). 
dt 

Therefore, 2 = a3(16t' + lot4). 



Here we can obtain in another way also. Substituting x = at2 
dt 

and y = 2at in z = x2y + xy2, We get 

z = a2t4.2at + at2.4a2t2 

= 2a3t5 + 4a3t4. 

Thus, = 10a3t4 + 16a3t3. 
dt 

You can try this exercise now. 

dz E22) Find in the following cases. 

5 4 2 a*) z = x y , where x = t and y = t3. 

b) z = exy2, where x = tcos t, y = tsin t 

c) z = x2 + 3xy + 5y2, where x cost, y = sin t 

d) z = In ( x ~ + ~ ~ ) ,  where x = e4 and y = e' 

Now suppose that z = f(x,y) and x and y are functions not of one variable t, as 
above, but two variables say, u and v, possessing first order partial derivatives. In ' 

other words z = f(x,y) where x = +(u,v) and y = +(u,v). 

In order to find a rule for obtaining a and a ,  we use the technique of partial au . av 

differentiation and regard v as a constant while obtaining and regard u as a au 

constant while getting a and apply the previous chain rule. av 

Consider for .example, u = x ~ - x ~ + ~ ~  where x- = rcos 0 and y = rsin 0. 

~ h e n , a  =cos 0, = - rsin 0 
ar ae 

2 =s ine ,  - - 
ar 

ay - rcos 0 
a0 

Therefore, 

aY a = + a - = (3x2-y) cos 0 + (3y2-x) sin 0 
ar ax ar ay ar 

2 dU = + 9 = ( 3 ~ ' - ~ )  (-rsin 0) + (3y -x) (rcos 8). 
a0 ax a0 ay a0 

The result can also be verified by direct substitution for x and y into u and then 
differentiating partially. At this stage it will not be difficult f ~ r ' ~ o u  to understand 
the concept of the total differential of a function. 

The total differential df of a function f(x,y) is defmed as 

For instance, if z = x~~ - 3y, 

then, dz = a ax dx + dy = 2xy dx + (x2-3)dy 
aY 

since =. 2xy and a = x2 - 3. 
ax ay 



This has applications in finding the error in a function of two variables, when the 4 p ~ ~ n s ~ ~ e ~ t ~  Cdculus 

errors in the independent variables are known. I 

You can now solve the following exercises easily. 

E23) Find and s, if 
2 a) u = x -xy +y2, where x = rcos 0, y = rsin 0 

b) u = x2dy2, where x = 2r-30+4, y = -r+80+5 

E24) Find df, where 

a) f(x,y) = xbdy 

b) f(x;y) = x " - 4 ~ ~ ~ + 8 ~ '  

Recall that in Sec. 7.3, we obtained the second and higher order derivatives for the 
functions with one variable. Now in the next section we shall obtain the second 
order derivatives for a function nf twn variables. 

7.7.6 Partial Derivatives of Order Two 
You know from earlier discussion that if f(x,y) has partial derivatives at each point 

af ar of its domain, then - - are again functions of x and y. These derived ftmctions 
ax ay 

may also have partial derivatives. 

af The partial derivative of - with respect to x that is, 3 ( 2 ) = dZf , ax ax ax2 
is called the second order partial derivative of f(x,y) with respect to x and written as 

a2f or f,,. 
ax2 af Similarly, the partial derivative of - with respect to y is 

av 

There are two more partial derivatives of f of second order. 
These are 

by fy, and - We alSo denote - ay - ax 
a2f by fxy. 

ax . ay 
> 

These are called mixed derivatives of second order and distinguished by the order 
in which f(x,y) is successively differentiated with respect to the independent 
variables. Thus, in f,, we differentiate first w.r.t. y and then w.r.t. x, whereas in 
f,, we first differentiate first w.r.t. x and then w.r.t. y. If f(x,y) and its partial : 

derivatives are continuous then the order of differentiation is immaterial and, in 
that case we have f,, = fxy. 

We now calculate all the second order partial derivatives in the following example. 

Example 12 : If f(x,y) = x2sin y, find all the second order partial derivatives. 

Solution : f, = 2xsin y, fy = x2cos y 
2 f,, = 2sin y, fyy = -x sin y 

a .  f,, = - (f ) = 2 (x2cos y) = 2xcos y 
ax Y ax 

a fy, = 2 (f,) = - (2xsin y) = 2xcos y 
ay aY 

You notice that f,, = f,,. 
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You may now try these exercises. 

E25) Find all the second order partial derivatives of the following functions. 

a) z = x2 + 5xy + y2 

b) f(x,y) = xeaY 

E26) Evaluate all the second order partial derivatives at ( 5 ,  5 ) of 

U(x, y) = xcos y - ycos x 

E27) For the following functions, show that fxy = f,,. 

a) f(x,y) = xln y 

b) f(x,y) = axnyn 

We shall now be proving a theorem due to Euler. 

7.8 EULER'S THEOREM 

Since the theorem is true only for homogeneous function we shall first begin with 
the definition of homogeneous function. 

Ordinarily, z = f(x,y) is said to be a homogeneous function of degree n for some 
constant n,  if the degree of each of its terms in x and y is equal to n. Thus, 

a(+" + a,xn-Iy + a2~n-2y2 + .... + a,l~yn-L + anyn ........ (1) 

is a homogeneous function of degree n. This definition of homogeneity applies to 
polynomial functions only. To  enlarge the concept of homogeneity we say that z is 
a homogeneous function of degree n, if it is expressible as xnf(y/x). The polynomial 
function (1) which can be written as 

is a homogeneous funct'ion of degree n according to the second definition also. 

We give some more examples below. 
xl14 + y1/4 

Example 13 : Show that function z = is homogeneous. 
x1IS + y1IS 

What is the degree of the function? 

Solution : Rewrite the given function as a function of (1 ). w e .  get, 
X 

-x1120 Y 
- f( , ) .  

1 Therefore, z is a homogeneous function of degree -. 
20 

Now if you have understood the definition of homogeneous functions, you can d o  
the following exercise easily. 

2 2- 2 3  
E28) a) Show that U = ' (" ) is a homogeneous function. What is the 

( ~ 2 + y 2 ) ~  
degree of this function? 

Y b) Is z = xn In a homogeneous function? 

We now give you the statement and proof of EulerXs theorem. 



Theorem : If z' = f(x,y) be a homogeneous function of degree n in x and y then, 

az x - + y * = n z .  
ax ay 

Proof : Since z is a homogeneous function of degree n by definition, 
Y z = x n f ( - )  X 

Y Y Therefore, = n x" f ( q )  + xn.fl ( T )  . (3 ) where f r  (T ) is the 
ax x2 

Y Y - 
differential coefficient o f f  ( i )  with respect to ( T )  and (A) is the differential 

x2 
Y coefficient of -j;- with respect to x. 

n-2 r Y ~ h u s , *  = nx" f ( 4 )  - yx f ( i )  
ax 

. . 
S~milarly, * = xn f '  (I) ( 1 ) = xn-' Y 

aY X X 
f 

az az Y Y andx  - + y - - nxn f ( 4 )  - yxw' f '  ( T  ) + xn-' yf' (-i ) 
ax aYp 

\\ 
az Hence, x - + y .& = nz. 
ax ay 

Example 14 : Verify Euler's theorem for 'the function 

Y f(x,y) = x~~~ sin-' (x ). 
2 Y Solution : Rewriting the given function in the form f(x,y) = x6 (* ) sin-' (y ) , we 

see that f(x,y) is a homogeneous function of degree 6. Thus, to verify Euler's 
theorem we have to show that, 

4 2 NOW, 2 = 4xJy2 sin-' ($ ) + x y 1 
ax 

3 2  . - I  = 4 x y  sin ( 4 )  - x3y3 

JW 

af = 2.1y sin-' ( 4 ) + x4y2 1 
aY ' ( i )  rn 1 - 

and 

af x - + y dt = 4x4y2sin-' ( q  ) - Y 
ax 

y 3  + z~~~~ sin-' (, ) 
ay Js 

AppKcations of Differential Calculus 

Thus, Euler's theorem is verified. 

You may now try the following exercises. 



E29) Verify Euler's theorem for the function 

f(x,y) = ax2+2hxy+by2 

x2+y2 E30) If U = sin-' (- ), show that 
X+Y 

We now conclude this unit-by giving a summary of what we have done in it. 

7.9 SUMMARY 

In this unit we have covered the following points. 

1) Equations of tangent and normal to a given curve at any given point. 

2) Method of calculating second, third and higher order derivatives of a given 
function of one variable, ancJ in simple cases, guessing the nth order derivative. 

3) Expansion in power series of 'functions, using Maclaurin's formula. 

4) Methods of finding maxima and minima of a given function. 

5) Method of tracing a few simple curves and finding their asymptotes, if any. 

6) Limit, continuity and partial derivatives upto order two of functions of two 
variables. 

7) Euler's theorem. 

7.10 SOLUTIONSIANSWERS 

E 1) Tangent is 2x - y + 1 = 0 and normal is x + 2y = 7. 

E 2) (a) Tangent is xx, + yyl = a2 and normal xly-yl x = 0 
(b) Tangent is xly + ylx = k' and normal xxlyyl - x: - d. 

Normal is y + 2x = 12a. 

Normalisy- - = - x -  A ;( A) 
1 

E 5) (a) f'(x) = - 2 (x+ f" (x) = 

(c) y' = cos x ; y" = -sin x ; y" = -cos x. 
2 

(d) y' = x + 2x111 x ; y" = 3 + 21n x ; y" =,, 

E 6) '(a) (-1)" n! (x+a)"; 
(b) (-I)"? (n-l)! an (ax+b)-"; 

1 (c) a-n cos ( y  + x , 



E 7) (a) f(0) = e0 = 1 and all successive derivatives at x = 0 remain 1. Hence the 
result. 
(b) f(0) = 1; f(l) (0) = 0 ; f(2) (0) = -1 and so on. 

Thus, by the substitution in the Maclaurins expansion the result follows. 

1 E 8) (a) f(') (x) = - = 1 - x2 + x4 - x6 + . . . . . by simple division, therefore 1+x2 

f(2) (0) = 0; f(3) (0) = -2. 

Therefore tan-lx = 2 x3. 
3! 

1 
(b) f(x) = In (1 +x), f(') (x) = - 1 , f12) (x) = - - ; f(3) (x) = 

2 
1 +X (1 + x ) ~  ( 1 + ~ ) 3  

(using Binomial expansion) 
.'. f13) (x) = 2 '[I-3x + 6x2 - 10x3 + ..... ] 

2 
E 9) fl(x) = 16 - 1 2 ~ ( ~ ) , .  Stationary values are + - . VT 
E 10) f' (x) = 2(x-2) (a) Increasing for x > 2. 
(b) Decreasing for. x < 2 (c) Stationary at x = 2. 

d '  E 11) 2 > 0 in 0 < x < !! hence increasing. 
dx 2 

3 < 0 in 5 < x < n hence decreasing. 
dx 2 

n *= 0 at x = - therefore stationary. 
dx 2 .  

E. 12) (a) y" = 5 concave downwards for all x. 3 

(b) y" = 6x. Thus curve is concave upwards for x > 0, downwards for x < 0. 
(c) y" = ex, concave upwards for a1l.x. 

' E 13) (a) Max at x = .-I, min at x = 2. 
5 (b) M& at x = - 4 ' 

(c) Min at 0 = 0, and 0 = f 2nn. 

d E 14) 2 = 4x3 thus x = 0 is a stationary point. 
dx 

dy Now, * < ~ f o r x < ~ a n d - > 0 f o r x > 0 .  
dx dx 

Thus x = 0 is a point of minima. 

E 15) Let x and y  be two numbers. Then x + y = 40 and xy = p = x (40 -'x), 

-- d2P dP - 0 when x = 20 and -< 0. 
dx dx2 

Thus, P is maximum when x = 20. Also when x = 20, y = 20 and therefore 
maximum P = 400. 

E, 16) (a) Coefficient of y is x and coefficient of x is (y - a) so x = 0 and y = a 
are the asymptotes. 

9 (b)y + 30 for x + -2.  Also, x = -2 + -and x + w for y +  4. Thus 
y-4 

x = -2 and y = 4 are the asymptotei. 

E 17) (a) Coefficient of x2 when arranged in descending powers of x is y. y = 0 is 
an asymptote. 
Similarly, x = 1 and x = 2 are the other asymptotes. 

Fig. 16 



Fig. 18 

(b) Substitute y = mx + c, put the coefficient of two highest powers x as 
zero and get y = x - 1 as one asymptote. 

(c) Coefficient of y2 is (x-1) thus x = 1 is one asymptote. Other two oblique 
1 1 asymptotes are y = x + - and y = - x - - 2 2 ' 

(d)x = 1, x = -1, y = 0 are the three asymptotes. 

E 18) (a) (1) Symmetry about y-axis. 

(2) (0, 0) lies on the curve. 

(3) y increases from 0 to whenever x increases from 0 to m or decreases 
from 0 to - m. 

(4) $= 2x => x = 0 is a stationary point. Also 
dx 

- -  d2y - 2 2 0, therefore x = 0 is a point of minima, 
dx2 

The graph of the function obtained is as shown in Fig. 16. 

(b)(l) Curve crosses the y-axis at (0, 1). 
(2) As x increases from - 30 to a, y increases from 0 to a .  The graph of 

the function is given by Fig. 17. 

(c) (1) Symmetry about x-axis. ' . 

(2) Curve crosses the x-axis at (2a, 0). 
(3) y-axis is an asymptote. 
(4) ,Curve does not exists for x > 2a and x < 0. 
(5) As x decreases from 2a t o o ,  y increases from 0 to a. 

The graph of the function is as shown in Fig. 18. 

E 20) (a) z, = 4x3 and zy = 6y. 

(b) 2, = Cos y - ysin x ; zy = -xsin y + cos x 
(c) z, = cos (3x + y) .3 = 3cos (3x + y) 

zy = cos (3x+y) .1 = cos (3x + y). 

1 1 % 
z - (d) z x =  1 + ( X + ~ ) Z  y -  1 +(x+y)f 

(e) z, = ex-y; z, = -ex-y 

X (f) zx = In y ; zy = - 
Y 

a -1 
(g) z, = (-1) (x-2y)-2. - (x - 2y) = - (x - 2y)-= = . ax (x-2~ )* 

a 
Zy = (-1) (x-2y)-'. - (x - 2y) = - (x - 2y)-2 (-2) = 

2 
aY (x-2~ l2 

az x az Y E 21) (a) - = - - and - = - - 
ax z aY z 

az ~ x + ~ J J + ~ z  and g - 4y - 3x (b) - = - 
ax 3~ + 22 ay 3~ + 22 

a z az dx dy E 22) (a) - = 5xY4 - = 4 ~ 5 ~ 3 ,  - = 2t, - = 3t2 ax a? dt dt 
dz Therefore, - dt = 22t21 

dz (b) -= y2exy2 (COS t--. tsin t) + 2xyexy2 (sin t + tcos t)' 
- dt 

dz (c) - = 4 sin 2t + 3cos 2t 
, dt 



dz -2 (e-2t - e2') (d) - = 
dt e-2t + e2' 
au E 23) (a) -= (2x - y) cos 0 + (2y - x) sin 0 
ar 

+= (21 - Y) (-rsin 0) + (2y - r) rcos 0 
a0 

au (b) -=4x  + 2y; *= -6x-16y 
ar ae 

a f a f 
E 24) (a) df = -dx + -dy = (3x2edy+ cedy)dx + x4e*dy 

ax ay Y 

(b) df = (3x2y - 4y2) dx + (x3 - 8xy + 24y2) dy 

az az E 25) (a) -=2x+  5y,-=5x+2y ax ay 

a2z a2z 
-@ = 2 ;  - = 2 ;  a Y 

(b) fU, = 0, fyy = xa2eay 
fxy = a eay and f, = 0. 
Note that fxy f fyx in this case. Can you guess why? 

E 26) U,= l z  , Uyy = - 1 , uXy = uYx = 0. 
- 4  n 4  

1 
E 27) (a) f,, = fy, = - 

Y 

(b) fxy = fyx = mnax*l.ym-1 

. x 2 [ x 2 ( l - $ ) ] 3  

E 28) (a). U = s)13 

Hence, U is homogeneous function of degree 2. 

(b) It is of the form xnf (f) hence homogeneous function of degree n. 

a f E 29) - = 2(ax + hy) ; af = 2 (hx + by) 
ax ay 

E 30) By definition, sin U = !!%f = f (say). 
x + Y 

But is homogeneous of first degree. 
X + Y  

Thus, using Euler's theorem .we get 

6U' Therefore, x ms U + y ms  U - = sin U ax 6~ 

Divide by ,cos U throughouf and get the result. 



UNIT 8 THE INTEGRAL 
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8.1 Introduction 
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8.4 Definite Integral as the Limit of the Sum 
8.5 Fundamental Theorem of Integral Calculus 
8.6 Summary 
8.7 Solutions/Answers 

8.1 INTRODUCTION 

So far we concentrated only on that part of calculus~which is based on the operation 
of the derivative, namely, 'differential calculus'. The second major operation of the 
calculus is integral calculus. The name 'integral calculus' originated in the process 
of summation, and the word 'integrate' literally means 'find the sum of. 
Historically, the subject arose in connection with the determination of areas of plane 
regions. But in the seventeenth century it was realised that integration can also be 
viewed as the inverse of differentiation. Integral calculus consists in developing 
methods for the determination of integrals of any given function. 

The relationship between the derivative and the integral of a function is so important 
that mathematicians have labelled the theorem that describes this relationship as the 
Fundamental Theorem of Integral Calculus. 

In this unit, we will introduce the notions of antiderivative, indefinite integral and 
the notion of definite integral as the limit of a sum. The Fundamental Theorem of 
Integral Calculus is also discussed in this unit. 

Objectives 

After reading this unit, you should be able to: .. compute the antiderivative of a given function, 

use the properties of indefinite integrals to compute integrals of simple functions, 

compute the definite integral of a function as the limit of a sum, 

compute the definite integral of a function using the Fundamental Theorem of 
Integr'al Calculus. 

8.2 ANTIDERIVATIVES 

So far, we have been occupied with the 'derivative problem', that is, the problem 
of finding the derivative of a given function. Some of the important applications of 
the calculus lead to the inverse problem, namely, given the derivative of a function, 
is it possible to find the function? This process is called antidifferentiation and the 
result of antidifferentiation is called an antiderivative. The importance of the 
antiderivative results partly from the fact, that scientific laws often specify the rates 
of change of quantities. The quantities themselves are then found by 
antidifferentiation. 

To get started, suppose we are given that fl(x) = 5. Can we find f(x)? It is easy to 
see that one such function f is given by f(x) = 5x, since the derivative of 5x is 5. 
Before making any definite decision, consider the functions 




