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6.1 INTRODUCTION

The word ‘Calculus’ is a Latin word, which means a ‘pebble’ or a ‘small stone’. The
word ‘calculate’ is also derived from the same Latin word ‘calculus’. Calculus is
primarily concerned with two basic operations called differentiation and integration.
Isaac Newton (1642-1727), the English mathematician and scientist, and Gottfried
Wilhelm Leibniz (1646-1716), the German mathematician, are considered the

- inventors of calculus. Newton in 1665 and Leibniz in 1675 made their inventions
independently. But Leibniz in 1684 was the first to introduce notations and symbols
which continue till today with only a few modifications.
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Newton and Leibniz were both interested in the geometncal aspects of calculus such
as finding areas bounded by curves and finding tangent lines of curves. It is in this
connection only, they invented rules and techniques of differentiation and
integration. It was only with the introduction of the concept of the “function”, a
word first used by Leibniz, that the interest shifted from geometry to what we call
analysis today. In Unit 2 of Block 1, you have already studied about various types
of functions. The concept of “functlon occupies a central place in calculus. Other
important topics include the concepts of limit and contmunty of a function, rules of
finding derivatives of various trigonometric, algebraic, inverse trigonometric

* functions, various methods of integration, definite integral etc. We shall be studying
some of these concepts in this unit.

Objectlves

After readmg this unit you should be’able to

-®- compute the limit of a function, : _

® define and give examples of continuous function, ' ) Leibniz (1646-1716)

® compute the derivatives of algebraic, trigonometric, inverse, exponential and '
logarithmic functions,

® describe the geometrical significance of the derivative.

62 LIMITS | \

From Unit 1, you know that f is a function if f(x) is uniquely defined for every x

in the. domain. For instance, if x = pulse rate, and f(x) = body temperature of one

patient, then x and y measured several times, does not define a function

(ref. Unit 1). On the other hand, if x = biological species, and f(x) = the number L ;
of chromosomes associated with each x, then this defines a function. ) ' -5




Firstly, we shall discuss the concept of the limit of a function at a point. Consider the

AP | ~ function f: R R such that f(x) = X2=%_ This function is defined for all x € R
6 (the set of‘real numbers) exceptat x = 2. Atx =2, ’;2_—24 = —8—, is undefined.
3 Y= Let us see what happens to f(x) as x gets cléser and closer to 2 without actually
' taking the value 2 (see Fig. 1).
2° Table 1
o 3 3 ps ~» X 5 1.0 |. 15 1.8 1.9 2.1 2.2 I 25 3.0 35
fx) | 25 | 30 | 35 | 38 | 39 | 41 | 42 | 45 | 50 | 55

Fig. 1 .
' If you look at the Table 1, you will notice that as the valug of x increases gradually
from .5 to 1.9 the corresponding value of f(x) increases from 2.5 to 3.9 which is very
close to 4. All these values of x viz. .5, 1.0, 1.5, 1.8 and 1.9 etc. are less than 2. In
this case we say that x is approaching 2 from the left of 2. Similarly, as x decreases
from 3.5 to 2.1 the corresponding value of f(x) decreases from 5.5 to 4.1 again a -
value very close to 4. In this case we say that x is approaching 2 from the right of
-2 since x in all these cases is greater than 2. Thus x can approach 2 from either side
1r- of 2.

Also, as x gets nearer and nearer to 2 from either side of 2, f(x) gets closer and

' Yf y=1f(x)

"1 O 1 fcloser to 4. It means that if we take x sufficiently close to 2, then the numerical
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ThlS is expressed by saying that we say that the limit of f(x) =

dlfference between the function

and 4 can be madé small enough. -
’)_4 ’
x—2
® : approaches 2 is 4. Formal definition of limit is now glven below.

as x

- Definition : A function f is said to tend toward (or.approach or have a limit) L as
x approaches a number ‘a’ if for the values of x which are very close to a, the

_ absolute value of the difference between f(x) and L is less than any preassigned
Y‘ . positive number (however small it may be). This is expressed symbolically as

y=g(x) lim f(x) = L (read, “limit of f(x) as x tends to a is L").

- .Therefore., iff(x) = ’;2__24 ! lin; f(x) = 4.

o | Y —s The limit L is a number associated with a function at a point (the point a). There
’ X are also other numbers associated with this function at the same point, for instance
f(a), the value of the function at'a. While L and f(a) are frequently equal to each
other, they need not always be so. In fact, either one or both may fail to exist; even
if both exist, they may be unequal. For instance, if f(x) = |x|, then from the graph
of f(x) = (x| (Fig. 2(a)), we see that if x is close to zero, then so is f(x), infact x
® ~ and f(x) are always thc same distance from zero. Thus f(x) — 0 as x — 0 or
. !‘lﬂ) f(x) = 0.

Now, if
_ |l Ix lfx4=0
g(x)—[H =0

Then g(x) = f(x) for x # 0 (Fig. 2(b).). Thus, g(x) must have the same limit as
f(x)asx— 0, so lim g(x) = 0.

This shows hm g(x) * g(0).

x Finally, consider the function h(x) = |x|, x # 0
- which is undefined for x = 0 (Fig. 2(c)). In this case also, llm h(x) = 0, despxte the

fact that no value is given for h(0). Since in all these caSes the limit is zcnjo as x
approaches zero, it is clear that the limit of a function at a point has nothing to do

Fig. 2 with the value that the function has at the point, or even with whether it has any
6 ‘ value at all at that point.
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When x — a through values greater than a, x approac}tes a’ from the right and this is Differential Calcutus:
expressed as llm f(x) =L. This is calléd the right hand limit of f at a. Slmllarly, if

X is restncted to values less than a, we obtain the left hand limit of f at a that is,
'llm_f(x) =

The existence of the limit L implies that both the right hand and left hand limits
exist and are equal, that is,

Tim_(x) = lim f(x) =

So far we have only considered limit at a finite point. However, it is also possible:
to consider limit of function at infinity, that is, as the variable.becomes unbounded.

If a variable x increases without bound, we say that x is 2pproaching positive infinity
and we write X —> +o0, Stmlla.rly, if x decreases without bound, we say that x is
-approaching negative infinity, and we write x — = If for instance,

f(x) = %, x # 0 then as X — % OF X —> —o; , f(x) takes on values cl_oser and closer

to zero. Thus, lim L = lim -L = 0.
3 - x—+0 X X

X——0oc

Also, limit of a function may or may not always exist at a point. The function f
itself may tend to become very latgg when x approaches a point a. For example,

the function f(x) = 2?-x tends to infinity as x — 2 because 2—x — 0 as x — 2.

Further, lin%_ -2—3"- = 400, since as x abproaches 2 from left, (2—x) will always be
x— -

© positive tending to zero. Similarly, lim —3_ = _e.Hénce, lim=3_ does not
2% 2—X x—2 2—x

exist. We will now state a theorem on limits which follows from the definition of a

limit. We shall be assuming the theorem without actually provmg it as the proof is

beyond the scope of this course.

Theorem 1 : Let_f. R—-R and ¢: R — R be two functions.
Let }(1_13 f(x) = A-and 11_1)131, ¢ &) = B. Then

a) Hcis a constant; lim c-f(x) = c A

b) lim {£(x) + $(x)} = A + B

‘©) lim {f(x) ~ $(x)} = A - B

d) lim {{()6(x)) =

e) lim {f(x)/$(x)} = A/B provided B # 0.

These results are very important and will be used again and again for évaluating

limits. We shall be illustrating this through various examples. But before that we
would like to 'mention some basic rules for evaluating limits.

1) If the limit of f(x) has to be evaluated when x —a, then substitute x = h+a and
evaluate the limit of f(a+h) as h — 0,

2) If the value of the function becomes 0/0 on puttmg X = a, then cancel any
-common factors between numerator and denominator and proceed as in (1).

3) If you have to evaluate limit x — o, then put x = 1/u and evaluate limit for
u—0.

- Let us now use these rules and Theorem 1 to solve the following examples:

Example 1 : Evaluate lim ’;"’6

Solution : Substituting x=2in ’;j’f does not give us —8—

ASo»,,we pltt X = 2+h, then
x246 _ 2+h)*+6 _ 444h+h’+6 _ 10+4h+h?

x—1 " 2+h-1 1+h - 1+h

- 10+4h+h? _
—2 X—1 !-.l_[f(l) 1+h 10.




Solution : f(x) becomes 0/0 on putting x

Example 2 : Evaluate lim f(x) where f(x) = X2+4x=5
Xx— .

x24+x-2 ’

i
=

Therefore, we write

x2+4x—5 _ (x+5) (x=1) _ x+5

Cx=2  (x+2)(x=1)  x+2
(This way we get rid of the troublesome factor (x—1) : ) and so nuw

i X2H4x—=5 _ oo x+5 _ 145 _ 6 _
}‘l_l’t} 2+x=2 !(EH x+2 .:.‘l+2 3 2.
Example 3 : Evaluate lmg x", for each positive integer n.

Solution : Forn =1, limx" = limx = ¢
N X—C X—C

For n = 2, let f;(x) = x, f3(x) = x, ...... L E(x) = x
Then ll_rg X" = 1m2 { f1(x)f2(x) ..... f.(x) }

(!‘Lng X) e (lirrg x)  [using Theorem 1d]

= C.... c=c"\
You may now try this exercise.

T et Amm— ————

El) Evaluate tie following limits:

a) lim _x=3
=3 x24x-12

b) lim 3";(15' (Hint : divide numerator and denominator by x then take

x—x 7X _—
limit)
. ox2
<) ll_,n; x—3
d) lirr(l) J1+x ; v1=x (Hint : multiply the numerator and the denominator
X— ' :

by V1#x + /1-x and then take the limit)

A
e) Iff(x) = X find%in‘l)i(—)ih)h—f(—x—)—

Now after doing this exercise you must have got good practice about the evaluation

of a limit of a function at a point. We now familiarise you with the concept of
continuity and continuous function. The term “continuous function” was used by
Euler and other eighteenth century mathematicians, but in a sense different from
the one in use today. Bernhard Bolzano (1781-1848), a Bohemian priest and scholar -

" gave essentially the modern definition of continuity and developed some of its

consequences in a paper written in 1817. Meanwhile, Akugustin Louis Cauchy
(1789-1857), a French mathematician, used the samie definition a few years later and
it was through him that the notion of continuity became well known.

6.3 CONTINUITY

Before giving the formal definition of continuity, we would like you to understand
the concept of continuity of a function through some examples.

Example 4 : Discuss the continuity of the function f : R — R defined.by

a) f(x) = 2x + 1

b) f(x) = x*
c) f(x) = 1ix
d) f(x) = x* when x # 1 y ‘

=2whenx =1




Solution : The functions (a) and (b) are well defined for all x € R. Their graphs are
unbroken and there are no jumps in them. (See Fig. 3)

YA Ar
. y=2x+1 ' ¥ ‘
r y: x.z
10% xv 0 rf#
(a) (b) .
.ﬂl

Y
0 X

() , )
Fig. 3

While drawing the graphs of these functions the pencil never leaves the paper.
Function (c) is not defined at x = 0. In.fact even the lirr(x) f(x) does not exist because

f(x) = o for x — 0" and f(x) = — as x — 0.

The function (d) is the same as function (b) except at x = 1. At x = 1 the given
value of the function (d) is 2, but the limit of the function is 1. Thus, at x = 1, the
limit of the function is not equal to the value of the function. Therefore, there isa
jump in the function at x = 1.

In this example, the two functions (a) and (b) are said to be continuous functions
-for all x € R. The function (c) is not continuous at x = 0, whereas the function (d)
is not continuous at x = 1.

Let us now consider another example to see what we are trying to say about
continuity.

Example 5 : Discuss the continuity of the function f where
f(x) =2for0<xs1
3forl <x=2
4for2 <x=3




Caleulus

Rational functions are continuous
at all points where denominator
is non-zero.
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Solutién : This function f is known as a step function;’and it has jumps at x=1,2,3
(see Fig. 4).

‘1

4 o—

34 o—

N

-

o i 13 X
Fig. 4

It is clear from Fig. 4 that at x = 1, 2, 3 the left limit and the right limit are not
equal and we say that the function is not continuous at points x = 1, 2 and 3 in the
interval (0 < x < 3). Conclusions drawn from the above two examples can be
summed up as follows.

The function f is-not continuous or in other words is djsconﬁnuous at x = a if any
of the following three holds:

i) the function is not defined at x = a.
ii) the liinit of the function f does not _exisf at x = a. ‘
iii) the limit of f at x = a exists but is not equalto the value of f at a that is, f(a).

In drawing a graph of a continuous function, the pencil need never leave paper,
while there is generally a jump in graph of a discontinuous function. This is of course
merely a property and not a definition of continuity or discontinuity. Thus, we now
give the formal definition of the continuity of a function at x = a, a point in its
domain. .

Definition : Suppose the domain of a function f includes an open interval containing
the point a, then f is continuous at a, if

i) the limit as x — a of f(x) exists.
i) lim f(x) = f(a), the value of f at the point x = a.

Also, a function is continuous in the interval ]a,b[ if it is contmuous at every point
of the interval ]a,b[.

Further, if a function is discontinuous at a point x = a, in its domain, but has a
finite limit L. at x = a, then we can make the function continuous at x = a, by
redefining it and assigning it the value L at x = a. Let us now illustrate this fact
through the following example.

Exnmple 6 : Discuss the continuity of the function f dcﬁncd by

f(x)— 9 ,atx =3,

_Soluﬁon’ : Function f is of the form 0/0 at x = 3.
Therefore, it is not defined at x = 3. But the limit,
tim £=0 = Jim D@3 _ iy (x43) = 6.
x—3 - x—3 X—3 x—3

Thus, f has a finite limit at x = 3.
Therefore, if we assign the value 6 to f(x) at x = 3, thun the function f defined by

y = X2-9 '
f(x) = S5 forx+3

‘= 6 for x = 3.
is continuodus at x = 3.




‘ou can now try the following exercises. Differential Calenlus

12) For what values of x are the following functions not continuous?

3x+1 x+3 3
Doy Ve 92
E3) What value assigned to f(x) at x = 8, will make the function f defined by

f(x) = 34 continuous?

E4) Is the function f defined by f(x) = xiZ continuous at x = —27 If not, can you v

redefine it to make it continuous at x, = —2?

Now you are well familiar with the meaning of limit of a function at a point. The
process of limiting can be applied to a’function f purely as a mathematical operation,
without regard to its possible interpretation in terms of physics or geometry. This
mathematical process about which we shall be studying now is known as
differentiation.

6.4 DIFFERENTIATION

The operation of differentiation when applied to any function yields a result which
is called its derivative.

6.4.1 Derivative of a Function at a Point

Given a function f, the main object of differential caiculus is to find, how the

function changes, when a small change is made in the variable x. In particular, in

differential calculus one is interested in the rate at which f(x) changes with respect 8 is the Greek letter “deita™
to x. In this section, we shall derive the formula which gives a mathematical zgﬂg?ngiioilﬁﬁ‘;;‘f??:'n::“:he
expression to this notion. Consider the function y = f(x), x € R. The sinall change

X a i ’ : product of & and x but rather a
in x, whether positive or negative is called an increment in x and is degjoted by 8x single quantity.

(pronounced delta x). Corresponding to this chagge in x, there is a change in y, we
denote it by 8y. Thus, we have

y+dy = f(x+38x)
Therefore, By‘ = f(x+38x) — y = f(x+8x) — f(x).
Thus, the average rate of change —gi—, is given by
By _ f(x+3x) — f(x)
dx dx
If this quotient tends to a limit as 3x — 0, then this limit is called the derivative of

the function y with respect to x and is denoted by %

In the above expression if we replace 8x by h, then we can write
dy _ . f(x+h) - f(x)

ax - im h

We thus have the following definition.

Definition : A function f whose domain includes an open interval containing the
point x, is said to be-derivable at x = x,, if

fo h) ~ f(x,)

exists.
h—s0
The limit is denoted by f'(X,) and is called the derivative (or differential ' The operation of ﬁnding the
co-efficient) of the function f at x = x,. derivative is called differentiation.

Remember that the limit must be the same whether h tends to zero through positive
or through negative values.

We now make use of the abové defmmon in the following examples.
Example 7 : Find the derivatives of

i) x%, i) Jx, i) 1/x, x€R 1
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f(x) = x%,
(x+6x)_2 and f(x+3x) - f(x) = (x+8x)* — xi

Solution : i) y
Thus, f(x+8x)

Therefore, ¥ = fim f0X80 — 1)

5x—0 dx

2 _y2
= lim (x+8x)2 — x

8x—0 dx
- 5 x2+2x8x+(8){)2 -
= lim. : =
© TBx—0 ox

= lim (2x+8x) +# 2x
Sx—0 ,

Hence, % (x?).= 2x.

i) f(x) = \/; Here, f(x+3x) = /x+8x

Therefore, % = lim \/x+8x -Jx

" Jx+8x — J_ Jx+8x + J/x

= lim

= dx m+ \/;
= lim X+8x—x
B0 (/X% + /x) O%
= 1
,/x+8x + J_ 2./x
Thus, 4= (f X) = > \/_

iii) y= % = X =1f(x) and f(x+3x) = I

i dy 1 13 51
Ixjehis case, dx gl—n.o 3x [ x+8x ;i_]

lim’ { x — (x+8x) }
8x

dx-x(x+8x)

= li -1 __ 1
gg‘»o x(x+8x 2

Therefore ) =
( x2 _

Remark : In Example 7, you will notice that the derivative obtained in (i), (ii) and

(iii) are 2x>™, 1/2 (x*™") and (—1)x"'"" respectively. They all follow the same

pattern namely, ?dx— (x") = n x™ for different values. of n.

-Let us now see if this formula is true in general.

' 6.4.2 Derivative of x"

Let y = f(x) = x", x €R. Then,
y+dy = f(x+5x) = (x+5x)". Thus,
8y - = f(x+8x) — f(x) = (x+8x)"—

= x" + nx™t - (Bx) + &2'11 2. (3x)% + L(“‘ls),&zl X3 . (6x)° +

Cerereenens + (SX)" - x"




using binomial expansion (Refer Block 1)
Therefore,

RO AU _______n(nZTl)_ x72.8x + ________n(n—lg'(n~2) (5x)* +

5 = X b T e (%)
................... + terms containing higher powers of &x.

Hence,

dy 8y n-1

dx N %XEO 8)( nx”

and this shows that the formula is true in general for all real n. You will now notice
that this formula is very convenient for finding the derivatives of various functions.

For examples :
de- (x®) = 8x** = 8x (putting n=8)
-dgx_ (x"s) = (-5)x>! = —5x° (for n = —5) and so on.

You can now try the following exercises.

E5) Write down the denvauves of the followmg
a) x> b)x?! ) x*?

E6) Compute the following :

a) fu=v,dudv=" b) If s = 4/, ds/dr = ?
c) Ifz=x",dzdx="? : d) If x = t*°, dx/dt = ?
e) IfR = u'?, dR/du = ? f) Ify=x?, dy/dx="7?

6.4.3 Geometric Significance of the Derivative

You know that the function y = f(x) represents a curve in the xy-plane. Let the
graph of this curve be represented in (OX, QY) plane by C. (see Fig, 5)..

v}

{Q(x+8x, y+3y)
. 8y
P(x,y)
C ox §
~T o R M N X
Fig. §

Take P(x,y) and Q(x+3x, y+3x) as two neighbouﬁng points on this curve C. Draw ‘_ A

PM and QN perpendicular to the x-axis and PS perpendicular to QN. Then

PS = 8x, QS = 3y and dy/5x = QS/PS. Join QP and produce it to meet the x-axis . -
at R. Let /PRX = 6. Now, if Q moves along the curve towards P, the chord QP
~ will move through P and in the limiting case when: Q coincides with P, the chord
. QP will become the tangent at P. Let PT be this tangent.

Differential Calculus
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Thus, when Q — P, /PRX will become /PTX = s, whiéh the tangent at P makes
with the axis OX.

Then dy _ lim by tan § = the slope of the tangent PT = the slope of the
dx Bx—0 OX '
curve C at P.

Therefore, the derivative of the function f(x) with respect to x at a point P on the
curve y = f(x) gives the slope of the curve at that point. For instance, the slope of

the curve y = x* atapoint(l,l)on itis -3—3;— (1.1 = 2(x)y=1 = 2. Thus, tan § = 2.

Also, the slope at (0,0) is 0 and at (2,4) is 4.

E7) Find the points on the graph of y = x/3 — x> — 2x — 3 where the tangent
is parallel to the line x—y—6 = 0.

Hint : Parailel lines have the same slop: (ref. Unit 4).

6.4.4 Rules for Differentiation

‘Let us now consider various rules of finding derivatives of different types of

functions. These rules follow immediately from the definition by making use of
Theorem 1. But here we shall be just stating them without giving their proofs.

Rule 1: The derivative.of a constant is zero. This is intuitively obvious if we think
of the derivative as the rate of change of y with respect to x. Since a constant does
not change, you will at once say that the rate is zero.

ify = f(x) = dy _ dlk
Thus if y = f(x) = k, k a constant, then ax = —C.K- =

Rule 2 : The derivative of the product of a constant.and a function is equal to the
product of that constant and the derivative of the function. That is,

dix {cf(x)} = cf'(x), where ¢ is a constant.
2 dy
Example 8 : For y = 7x" find X

Solution : Here, we take f(x) = x. Then,

: - : 2 742
ﬂ - km 7f(x+h),v 7f(x) - tim '/(_x—Lh) 7x
dx ho( h bt h

= lim J4Xh+7h® _ 4y = 7. 20 = 71'(x)
h—0 h

~Rule 3 : The derivative of sum or difference of two functions is equal to the sum

or difference of their respective derivatives. That is, if u and v are two functions of
x then, '

4 (utvy) = du 4 dv
dx (utv) dx t dx’

This result is also valid for the sum or difference of more than two functions.

Note : Rule 2 is also applicable to the product of a constant with sum or difference
of two or more functions, that is,, Fdf {c[f(x) = g(x) £ h(x)]} = cf'(x). %
cg'(x) % ch'(x). -

Rules 1-3 will become more clear from the following worked-out example.

Example 9 : If f(x) = 3x% + 5/x—2x, find £'(x).



Solution : f'(x) = de [f(x)] = F‘;— [3x + 5¢/x—2x]

T‘;- _(3x2) + &6 - L@

= (x)+5 L (/x-2-4 i ®
3.2x + 5. 1/2.x'”2 - 2.1
6x + S2(x?) - 2.

You can now try the following exercises :

ES) Find f'(x) where

a) f(x) =3x° +2/x  b) f(x) = X411
‘ . X
2
o) f(x) = Xo+x+1
) £(x) G |
E9) a) Ifu = v¥ - 6v + 8. find dwdv.
b) If r = 3s® — 5s* + 6% — 1, find dr/ds.

Let us now consider two more rules for differentiation.

Rule 4 : The derivative of the product of two functions = first function X derivative
of the second function + second function X the derivative of the first.

In other words, if u and v are any two functions of x then,-

-g-‘i + v -%x‘i, this is known as the product rule for differentiation.

4 =

. (uv) = u
' Example 10 : Differentiate with respect to x the function
Ty = (3x+7) (5-2x).

gy letu-3x+7andv—5 2x. Theny—uv

Solution : To get -

du dv :

Now, ax = 3and dx = 2. Using rule 4,
dy _ . dv du
o T Cax TV dx

(3x4_—7) (-2) + (5-2x) (3) = 1-12x.

E10) Differentiate the following with respect to x : ‘
a) (x*+7) 3—x)  b) (X+3x) (*+2) ) (x¥*~1) (X’—x+2)

Rule 5 : The derivative of the quotient of two functions = [denominator X derivative
of the numerator — numerator X derivative of the denominator] + square of the
denominator.

That is, if u-and v are functions of x then,

d (3) - v du/dx — udv/dx

, this is called-the quotient rule for differentiation.

I v =
For example, ify = gx 32 , then for u = 2x*> + 3 and v = 8-3x%,
X

du _ 4y, 9Y -~ _6x and using Rule 5
dX . 2 dx ; g H
dy _ (8-3x%) (4x) — (2x243) (=6%) _  32x—12x3+12x3+18x
dx (8~3x%)? j (8—3x%)?

- 50x )

(8—3x%)?

You can now do this exercise very easily.

Differential Calcuius
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El1) Find the derivétive' of -the following functions :

2x~-5 3x2 x12 — x-172 d) X+3x
) %xra P 2243 X2y xR ) x2+2

We will now give differentiation formulae for the six trigonometric functions using
these rules for differentiation as well as the definition of the derivative. Remember
that in all discussions involving the trigonometric functions radian measure is used.

6.5 DIFFERENTIATION OF TRIGONOMETRIC
FUNCTIONS

Trigonometric functions are of particular significance in life sciences because of their
periodicity. Biological rhythms such as heart beats or pulse beats are periodic. Also,
leaf arrangements, spirals, bird orientations are best represented through polar
coordinates involving trigonometric functions.

In this section, we shall derive the derivatives of trigonometric functions and in the

process use an important result on limit namely lim sn_r)x(x_ = 1. We shall not be
x—0 '

giving you the proof of this result. Apart from this result, we shall also be frequently
using, various trigonometric identities such as,

a) cos’x + sin’x = 1 b) 1 + cot’x = cosec’x

©) 1+ tan’x = sec’x d) sin 2x = 2sin x cos x

Derivative of sin x

Write y = sin x. Let 3y be the change in y corresponding to change 8x in x. Then,
y+3y = sin (x+8x) and

3y = sin (x+8x) — sin x

2cos (x+3%/2) sin 8x/2 (Refer Block 1)
8y _ 2c0s (x + 8x/2) sin 8x/2

ox dx

]

Il

cos(x+5x/2) - ﬂ%%%

Thus, ay = g‘mo g—i cos X, since ‘-‘5—%‘8—/2"& —1lasdx— 0

or, Fdf (sin x) = cOS X.
Exactly on the similar lines we get
d = —si
ax (cos x) = —sin x.

-di‘x- (tan x) can be obtained using quotient rule. Now,

% (tanx) = T(?:‘_ ( sinx) — .cos x d/dx (sin x) — sin x d/dx (cos x)

oS X cos’x
_"Cosx(cos x) —sinX (=sinX) _ cos2x+sinx
cos?x ' cos’x

= 1/cos’x = sec’x.
Similarly using quotient formula, we have

cosx-0—1-(—sinx)

cos?x
~_sinx __ 1 . sinx = sec x tan x
cos®x CO$SX COs X

Fdf (secx) = d_dx (l/cosx) =

_ad_ (cotx) = d/dx(cos x/sinx) = sin x (-sin.x) — cos x (cos X)
i ' sin’x
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—5in2x —cos2
= TSIN"X—COSX ?(ZCOS X = -] - cot’x = —cosec’x
sin’x
—dd (cosec x) = ——dd (1/sinx), = SHLX" »0_‘21 1 COS X
X X SIX
= TEBX = XX L = _cot x cosec x
 sin®x sin x sin x

Let us now sum up these results in the form of a table.

Table 2

f(x dar

(x) ax

sin x COS X

cos X —sin X

2

tan x secx

sec X secx tanx
cot x —cosec’x
cosec X —CcotX cosec X

The usefulness of thesc formulae is well illustrated in the following example and,
exercise. V

Example 11: Find %,where
1) y = sin x-sec X ii) y = x°cos x ) y = tan x + cot x
Solution:
i) -4 (sin x secx) = sinx d (sec x) + secx d (sin x)
dx dx dx

= sin X sec X-tan X + s$€c X Ccos X

= sin x (1/cos x) tan x + (1/cos x) cos x

= tan’x: + 1 = sec’x.

ii) d_(; ‘(xscos X) = x° -+(—sin x) + cos x - 5x*

5. 4
= —x’sin X + 5x"cos x.

il

iii) -d% (tan x + cot x) d_dx (tanx) + d—‘i (cot x)

2 2
= S8CC'X — COseC X.

And now an exercise for you.

E!2) Find the derivative of the following functions :
a)s x7sin x b) sin x cos x ¢) (3x+2)/cos x

e) tan X — cot x

d) x cosecx
tan X + cot X

For two given functions u and v we have already stated in Sec. 6.4 how to express
the derivative of their sum, difference;, product or quotient in terms of u, v and
their derivatives. We now consider the method of finding derivative of composite
function.

6.6 COMPOSITE FUNCTIONS — CHAIN RULE

In Unit 1, Sec. 1.8 of Block 1, you have already learnt about composite function.
But, before finding the rule for differentiating composite fuinctions let us once again
recall its definition. ) 17
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Definition : If y is a function of u where u itself is a function of x, then the result
of substituting u into y is called compeosite function of x or a function of a function.
Thus, for y = f(u) where u = &(x), we use the notation f[d(x)] to denote y, a
composite function of x. In order to be able to evaluate f{db(x)] it is necessary that
the value of ¢(x) be contained in the domain of f.

We now obtain the derivative of this composite function. Let 8y and 3u be the
increments in y and u respectively, corresponding to a change 8x in x.*

Then, we can write -

8y = ( By ) ( )(smce each of << 8 and 8“ is a quotient).
Takmg limits, as 8x — 0, we get
im & = lim . im 3

s0 OX  gy,p OU 59 OX
Smce x— 0 wxll mean Su — 0, we have

3x-0 §x au-.o 5“ 8x—>0 bx
. du
1n other words, _I = H "

This is an important and extensively used technique in differentiation.

Let us now solve some examples using this technique.

Example 12 ; If y = (ax+b)", find %'

Solution : Put ax+b = u. Then, y = u” and

dy _ _ ot du _
= nu™", but x =2
dy . dy  du
Therefore, = @ &
=m"'.a
= m'l(ax+b)"'l

- Working rule : Given a composite function f[$ (x)], first diffetentiate the function

f with respect to ¢(x) and then multiply the result with the derivative of ¢(x) with
respect to x.

Look at another example.
Example 13 : Find — (sm 8x)

Solution : Let y = sin 5x and u = 5x. Then, y = sin u.

ing chai dy _ dy  du
Using chain rule, ix = du  dx
=cosu-5
= 5 cos 5x.

) Note that in this example to obtain the derivative of sin 5x we have first

differentiated sin 5x to get cos 5x and then multiplied it by 5 that is, the derivative
of 5x to get 5 cos 5x. This point is further illustrated in the following example.

- Example 14 : Find i) '1_ @ +3I-5x+1>° i) 3‘% (sin®0) -

Solution : .) (x3+3x2—5x+1)3 = 3 +3-sx+1>t L (P+32-5x+1)
= 3(x 3432 -5x+1)? - (3x°+6x—5)
n) a0 (sm30) T (sin 8)° = 3(sm 0)> - ‘ﬂ) (sin 8) ’

= 3sin’0 cos 0. .
You can now try the following exercise.




E13) Find the derivatives of the following functions.

a) sin 3x b) cos 5x ¢) x’tan x
) (2x—1)3
d) V41 e) =L ) cosJx
, (x+1)
sinx
8) 1+cos x

Let us now see how the chain rule can be used to obtain the derivatives of some
more functions.

6.6.1 Differentiation of Exponential Functions

In Unit 2, Sec. 2.3.1 of Block 1, you have alreédy familiarised yourself with
exponential functions. An exponential function is defined by y = a* where x € R

and a is a positive constant. In particular, a = e where e is defined as lim (1+1/n)" =
n—s

2.7182818 provides the natural base for exp.nential functions. Whenever a quantity
is changing at a rate proportional to the magnitude of the quantity, we can look for
a relation based on e” because e* remains unchanged after differentiation.

je., 4 ex = A

(i.e., ax © e”).
In Chemistry, the reaction rates, chemical equilibria phenomcnon of solubility,
vapour pressure etc., depend on the law of exponential growth. Similarly, in
Biology, the weight increase of a plant, or the doubling of the growth of number
of cells also follow this law.

While calculating the derivative of e* we shall be making use of the fact that

eh—1

lim = = 1, without giving its proof.

h0

Now let y = €* and let 8y be the change in y corresponding to a change 8x in x, then

8y+y - eX+§X’ therefore 8y - ex+8x _ Cx
=] ex(eﬁx i 1)
dy _ ex(e*—1)
Thus, S -
dy _ . dy .  edx — 1
or 5= 151:20 X ;itlioe S

. 'Gx__
= ¢e* lim e—a—l=ex-1=e"
ox—0 X

Hence, —d; ") = &~
The derivative Ed; (€**) where, a is any constant can now be easily obtained, by
writing, X

ax
.

% (™) = &> - Tid; (ax) = ae
For example, we have

N I Tjd; (B3x) = ™ - 3 = 3*

dx

d a3y o 2r+3 d g, — 7.p2r+3

dar ) e i (2r+3) = 2.7

d (@) = e L () = ¥ (—2s?) = —2s? (¥

ds

A ()= d = _sin x-¢°5 X
dx ( ) A& (cos x) = —sin x-e“>5*,

Note : We apply the same method to find the derivative, when a is not a constant,
but is any function of x.

Differential Calculus
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| Caleuts Differentiation of a* : Put a = " so that a* = €™ and u = In a.

y 4 oxy - d ouxy _ oux o ox
Then,dx(a) dx(e) e - u=a"-lna

Thus, % (@) =2a"-Ina |
Notation In a represents log ¢* " The differential of % (a‘(")) for any general form of the function f(x) can also be
obtained as above by using chain rule in the form
£ @) = a@ina. L (x) = @i af(x).
Using this formula, we can write

l Xy — 92X
dx(2) 2"In 2

_d__ x3 = x3q _d_ 3 = 13 . 2
'dx(4) 4 In4. 4= (X) =4"In4- 3
5.

d (5" %) = 5*" % n dx (sin x) = 5" *In5- cos x

You can now try this exercise.

E14) Find the derivatives of the following functions.
d (3% _d_(gsin® d (2
L™ pgeE™) 9 L™

d L oL ey

We now calculate the derivative of natural logarithmic function, that is, logarithm
to the base e.

6.6.2 Differentiation of Logarithmic Functions

The loganthmlc function, as you already know from Unit 2, Sec. 2.3.2, is defined
as the inverse of the exponential function. In order to calculate its denvatlve let
y = In x and 8y be the increment in y corresponding to change 8x in x.

Now, y+38y = In (x+3x) and so

=In(x+8x)~Inx = ln—"‘*'Ts—.’g = In(1+8x/x)

Therefore, Y - jim X - lim_ —— - In (1+8x/x).
dx -0 OX
zm;‘::‘thl:::f:rfmﬁ"m’“s On multiplying and dividing by x, the above equality becomes,
: dy _ T X :
hBO 1n(l+—-) = 1/x gﬂo i In (1+3x/x)

= (128 1/x lim_ In (1+3x/x)™>
=In fim (1+3%) lim In ( ) o
Since lim (1+8x/x)"®* = e, we get = txine = 1/x
x>0 dx
(because Ine = 1)

‘ Thercfore (ln X) =

By makmg use of the cham rule and above-formula we have, for any arbitrary
function f(x),

L 1= v - L ) = W) - £ @)
For example,

d =
du (Inu) = lu

d_% [In(sin 8)] = 1/sin @ - _cfi—e (sin 8) = cos 8/sin 8 = cot §



d __1 d

L A+18)] = 4375 45 (1+15)
_ 1Ry = . (—1/s2
= 15 - (CUS) = dids - (=15
= —1/s(1+s). ‘

Using the above formula, the derivative of the product of two functions, one of
them being the logarithmic function can also be obtained very easily ‘as illustrated
in the following.

Example 15 : Find % In [r-In(2r)]

'~ Solution : % In [rIn(2r)] = ﬂgzr T% [r - In(2r)]
= _rl_nzﬁ [r - Hdr—(ln 2r) + In2r - —gr— (r)] (using Product rule)
= Tn%’l—r—)_ [r-1/2r Tjd? @r) +In2r- 1]

' =-Tn%2—r)-[1/2-2+ln2r-l]
= 71—(77 [1+ In2r)

How about doing an exercise fow?

E15) Find the following derivatives.

a) d/du fIn(u®=3)] b) d/dt intey ¢ d/dx[InVx]
d) d/d6 |1nsinV' 8]  e) d/dx (x*/In x) f) d/dr [3rin(r%)]

6.6.3 Differentiation of Functions Defined by Means of a Parameter

Suppose that x and y are given as functions of another variable t, by equations of
the form x = f(t), y = ¢(t). Then these equations taken together are said to be
parametric equations with parameter t.

For example, x = acos 8, y = asin § describe the circle xX*+y? = a®. Here 8is a
parameter. Similarly, x.= at?, y = 2 at describe the parabola y> = 4ax in terms of
the parameter t.

We shall now find the derivative of a function y = f(x), where x = f(t), y = &(t).

We assume that x = f(t) admits an inverse function t = {(x). Theny = $(t) =
o[U(x)], so that y is a function of x. By the chain rule for composite functions we
can then write

dy -~ dy gt dy _ dy/dt

dx dt ~ dx dx ~ dwdt’

Therefore, to fmd —— , We shall find dy and g’t‘ and take the quotient as

shown in the followmg examples. -

Example 16 : Find dy given x = at’, y'= 2at.

jon : dX — dy _
Solution : at 2at, ar 2a.
dy _ 2a _ 1
Therefore, Ax = Pat = 1 1

Example 17 : If x = a(6-sin 6); y = a(1—cosi). Find %xy— at & =~/4.

3 -g = a(l 0).. _d_y.‘= in é
Solution : 3 (1—os 9),, 36 asin §

Differential Calculus
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%

. dy _  asin®
Therefore, A a(1-cos8) ’ ‘
and at 0 = /4 ﬂ- = sinmd _ _ I/ﬁ h

" dx (I-cosn/d) a- 1/‘/’2)

=1/(/2-1).

You can now try this exercise.

E16) Find % for the following functions :
a) x = acos 9, y = asin 8
b) x=0R,y=2¢/3
¢) x=az, y= alz
d) x = acos’t, y = a sin’t

. In Unit 1 you have already read that any 1—1 function is invertible. That is, if f is .

a 1—1 function then it has an inverse function which we denote by . In this case

~ the domain and range of the function f will be respectively the range and domain

of the function f. If f is a differentiable function of x, then the inverse function
71 if it exists is in general a differentiable function. In the following section we shall
show how to differentiate an inverse function. :

6.7 -DlFFERENTIATiON OF INVERSE FUNCTIONS

Suppose we are given a functlon y = f(x) = x, then f has an inverse function given

by £(x) = x; but if y = f(x) = x> then since it cannot be solved umquely for x,
the function is not 1—1. Therefore, it does not have an inverse. Similarly, sin x does
not have an inverse if x € R. It is ewdent from Fig. 6 that |sin x has an inverse in
the mterval [=n/2, 7/2).

A \ | N

—2r : 0 = ;

y=-1 NA \ /
3nf2

y=sinx

Fig. 6

.Remember that if a function is 1—1 then no line parallel to the x-axis (including the

x-axis) will cut the graph in more than one point.

Let us constder a function y = f(x). We assume that it admits of an inverse function
X = ¢(y). We then have to find a relation between {'(x) and ¢'(y). Suppose that
3y be the increment in y corresponding to increase 3x in x. Then

Q . §¥.= i 8x 8 i
by X T 1, since By and —= o e quotients,
Now, & = __1_ and let 5x — 0. Then as 8x — 0, 8y — 0 and
dy dy/dx + ‘
dx _ 1
we have dy = dylax
or 4% . g 1, that is f'(x)-¢'(y) = 1.

dy dx



Thus, dy/dx and dx/dy are reciprocal to each other. For instance, consider a function
y=f(x) = 2x+1, then ¥ = 2.

dx
Also, x =—%1 is its inverse function and -g—; = %, and
dy .dx _,.1-
& dy " %272
~ You can now try the following exercises.

1

E17) If y = x*? for x > 0, differentiate the inverse function and verify that
dx _Tdy
dy | dx

E18) Ify = x*+5x+8, find g—;

Continuing further with the differentiation of inverse functions we now obtain the
derivatives of inverse trigonometric functions.

Differentiation of Inverse I'rigonométric Functions

The trigonometric functions sin'x, cos'x, tan'x, cot™'x, sec'x, cosec'x are -
generally defined as the inverse of the corresponding trigonometric functions. To
fix ideas the discussions in this section are restricted to sin”'x but, similar
considerations apply to other inverse trigonometric functions. You know that sin"'x
is defined as the angle whose sine is x. The sign (—1) here does not denote the
power of the functlon It is only a symbol to denote the inverse of the function. .
However, sin"'x because of the way it has been defined i is infinitely many valued.
To explain this we consider the functional equation

X =siny ... )

* Now to each value of y, there corresponds just one value of x in (1). On the other
hand, the same valne of x corresponds to an unlimited number of values of the
angle since we can find an unlimited number of values of the angle y, whose sine
is x. For example, corresponding to x = 0 we have y =0, w, 2, .... Thus, sin!x,
as defined above is not umique. The same remark applies to the remaining
trigonometric functions also. To avoid this, these functions can be defined only on
the intervals in which the corresponding trigonometric functions are yniquely
defined. The values in these intervals are called their prlncipal values. For example,
sinyis{l—1 function in [~#/2, /2] whose range is [— 1,1]. Consequently sin”'x is

uniquely determined for each x in [—1,1]. Here, we shall ‘be finding the derivatives

of all these inverse trigonometric functions corresponding to their principal values.

Derivative of sin™'x : (—7/2 < sin”'x < n/2).
Let y =-sin”'x. By definition x = sin y.

Therefore g; = cosy = ++ 1-sin’y = ++/1—x?, the positive sign is taken
- because y lies between —#/2 and 7/2 wheré cos y is +ve.

Thus,g 1(dx/dy) = 1/v/1—x>

1
‘/l—xz

Derivative of cos'x: (0<cos'x <)

4 Ginx) =
or 4~ (sin"'x)

Ify = COS_IX, X= cbs y and % = —siny




Therefore, % = — 1—x2; again +ve root of sin y has been taken because sin y i

positive between 0 and .

4 (cos'x) = —=1 _
Thus,r ix (cos™'x)

‘ J1-x2 .
Derivative of tan™'x : ( ~7/2 < tan"'x < 712

If y = tan”'x, then x ="tan y and g—; = sec’y.

g = = 2 . ﬂ = 2
So, dy 1+tan’y 1+x%. Thus, 5= = 1(1+x?).

4 (tan'x) =1
or (tan"x) =

1+x2
Derivative of cot'x : (0 < cot™x < 7).

If y = cot™'x, then x = cot y, dx/dy = —cc')seczy.

Therefore, % =—=1 _-_ -1 _ _=1
X cosec’y l+cotly 1+ x?
d o e
OF (cot™x) ok
Similarly, we have % (sec”'x) =1
x/x2-1

and d—‘; (cosec'x) = —=1__

X< /xi—l

We now sum up the above six results in Table 3.

Table 3
i af
f(x)- dax
sin'x 1
1-x2
-1 -1
cos™ X —
J1-x2
tan'x 1
1+x2
cot 'x —1
1+x?
~1 1
sec” X —_—
x/x2—1
-1 -1
cosec X -
x/x2—1

Using these formulas you can now very easily do this exercise.

E19) Differentiate the following :
a) sin'2x  b) cos™3x/4  c) tan"'(x*+1)
d) xsin”'x e) tan”'(x/a)

So far we have obtained several results that enable us to confp}xte derivatives of
many important functions. In each case the function f whose derivative we sought
24 was defined by an explicit formula, such as f(x) = x2+4, f(x) = xsin x, and so on.




NPT =

dx

We now consider a method, known as implicit_differentidtion, by which we can . '  Differential Caleutus
compuite the derivative of a function w1thout havmg an explrcrt formula for the '
function.-

6.8 DIFFERENTIATION OF IMPLICIT FUNCTIONS
AND LOGARITHMIC DIFFERENTIATION

The expressions x*+2ax+by” = 1 or sin(x+y) = 1 are examples of implicit functions.
These are of the form f(x,y) = 0.

In each of these y is not expressed directly in terms of x but only a functional

~ relation involving x and y is given.

To obtain the derivative of an implicit function, we first try to express f(x,y) = 0
as y = ¢(x), if it is possible and then the derivative can be obtained as in the case
of explicit functions.

But, if it is not possible to transform the given implicit function f(x,y) = 0 to 4 form
y = &(x), then we differentiate the given expression term by term with respect to
x and get the value of dy/dx from this. To get a clear idea of what has been said
above let us consider the following examples.

dy
-

Solution : We can rewrite y asy = * / a’—x? and then
Y =+ L @) (-2) = F x(@2-P,

Example 18 : Given x*+y*=a’, find

Examj)le 19 : Given the relation xX’>+y’ —6xy=0, find dy/dx. -

Solution : Here we cannot proceed as in the above example. Therefore,
differentiating the given expression term by term with respect to x, we get,

dy -0

32 + 3y? %— 6y'1 - 6x

Therefore, —g—x! (3y?>—6x) = 6y — 3% = 3(2y—x?)

or dy _ 3@Qy-—x)

dx 3(y2 —2x)
Note that y* is a function of x, therefore, —$- dx (y ) = (y3)
3y2 and similarly for other y terms in the problem

While dlfferentlatmg the given expression term by term, remember that every time
you differentiate a function of y, it has to be multiplied by dy/dx in order to get
the derivative with respect to x.

Example 20 : ¢¥ = xy, find dy/dx.

Soliltion:e’%= y+x LYy

dx ’
therefore, gx'(e"—x) =y giving % =3
) ’ e’—x
Example 21 : In (xy) = x*+y?, find gz
1o, dy - o 4y
Solnﬂon.xy [x + y1] 2x+2y 3
dy - dy _ 2x-— 1k
or dx (1/y - 2y) = 2x — 1/x, thus, ax = Ty =2y

You can now try this exercise. ' ' 25




Method of differentiating
- functions by first taking
logarithms and then
differentiating is called

' logarithmic differentiation.

]

E20) Find dy/dx in the following cases.
a) +vi=a’ b) y* = 4ax ¢) xy =k?

d)‘x”12+ym=a”2 e) e =xy

When the function to be differentiated is the product of a number of factors then
we make use of the technique called logarithmic differentiation.
Logarithmic differentiation
When using the technique of logarithmic differentiation we make use ‘of certain
properties of logarithms which facilitate algebraic manipulations. For example, the
following properties of logarithmic functions are known : (see Unit 2)
1) If u = xyz/abc, then Inu=Inx + Iny + Inz ~— Ina — Inb - Inc
a complicated operation with products and quotients transformed into a simple
operation involving sums and differences.

2) Ify=a'theniny = flna, where ais a constant. A power function has been
expressed in a simple form.

3)) fy=u', 'where u and v are both functions,

Iny = vinu (asimpler vefsion of the equation).

‘Some of these properties can be used with advantage when differentiating certain

tyoes of functions and this will be illustrated, through these examples
Example 22 : y = a™®, a being a constant, find —!

Solution : Take logarithm of both sides, then
Iny = f(x)ln a (Ina is again constant because ais constant) leferentlatmg
with respect to x, we have

1LY _pnar
v & In a-f'(x)
Therefore, % = y'n a-f'(x) = a®In a- f'(x)

Exnmple 23:Ify = u’, where u and v are functions of x, find dy/dx:

Sotution : Taking logarithms of both sides In y = v In u. Now differentiating both
sides with respect to x, ‘

Vy%= y%(lnu)+lnu-ﬁ‘;(v)

= du .yﬂ
-vlludx+lnu dx

Therefore, :x = y[ Vd“ + Inu d"]

_ vr vdu dv ‘
—u[——udx +lnudx]

. o dy o
E21) Find ax where,

ay=a" by=2% ogy=¢, dy=@"*

6.9 PHYSICAL ASPECT OF DERIVATIVE

In this section we will discuss a very commonly used aspect of the derivative,
namely, the‘den‘vative as a rate-measurer. Indeed, this interpretation of the
dy _ by

= lim —=.

derivative is inherent in the definition itself. Recall that,
; dx 3x—-0 OX
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- Now dy/ox is the rate of change of y with respect to x in the interval 8x. Therefore,

' dy/dx can be seen as the limiting value of the rate when 8x—0. We call this the
instantaneous rate of change of y with respect to x. For example, if a car moves a
distance 8s in time 8t then the rate of change of distance with respect to time, that
is, the speed of the car is 8s/5t and we say that the velocity v of the car is ds/dt at
any instant. If the car is not moving with constant velocity, then d/dt (ds/dt) =

d2s/dt2 S is called its acceleration a at any instant.

The denvahve d?s/dt? is called the second order derivative of s with respect to t.
We shall be studying about the second and higher order derivatives of a function
in Unit 7.

We now consider two examples which establish the 1—1 correspondence between.
the mathematical problem expressed i in terms of derivatives and its physical
interpretation.

Example 24 : If the law of motion of a particle is given as

§ = 25+3C—1, then |

a) find its velocity, and acceleration.

b) find the distance covered by the.particle in time t = 2 units.

Solution : a) Since the law of motion is given by s = 25+362-1%,

its velocityv = gﬁ 6t — 3t2 and
accelerationa = %‘t'— = ( ) = 6 - 6t.

b) The initial distance of the particle that is, the distance at
= 0-is 25 + 3(0)? — (0)> = 25 units. The-distance at t = 2 is -
25 + 3,29 — (2°) = 25 + 12 — 8 = 29 units.
Hence, the distance covered by the particle in' t = 2 units is 29 — 25 = 4 uits.

Note that in Example 24 the velocity v = 6t—3¢ of the particle is zero at t = 0 and
at t = 2. Physically this fact can be interpreted by saying that the particle started
from rest and comes to instantancous rest after time t = 2 units.

Example 25 : Water is dropping from a burette on a clean circular container plate

so that a circular pool is formed. The pool is gradually increasing in area and in
radius. What is the ratio of the increase in area to the increase in radius. What is
the numerical value of this ratio when the radius is 2 cms.

Solution If A is the area of the clrcular pool. (see Flg 7), then A T, “where
r is the radius of the circle.

Therefore, dA/dr = 2z gives the instantaneous ratio of the increase in area to the
increase in radius. Numerical .value of this rate of change when r = 2 cms is

T (dA/r),—; = 27.2 = 4m.

You can now try the following ekercises.

E22) If a protemn of mass m disintegrates into amino acids according to the formula

m = 28/(t+2) where t indicates time, find the average rate of reaction n
the time intervalt = 0to t = 2.

E23) If a metabolic experiment éhows that the mass m of glucose decreases with

respect to time according to the equatlon m=(45)-(. 03)t2 find the rate
of reaction at t = 2.

E24) Vander Waal’s equation for a gas is (p+av ) (v—b) = k where p is the

‘pressure and v is the volume of gas and a, b and k are constant. What is the
rate of change in volume with respect to change in the pressure?




6.10 SUMMARY
We conclude this unit by giving a summary of what we have covered in this unit.
1) The definition of the limit of a function. ‘

2) The definition of the continuity of a function at a point.
3) If y = f(x) then the derivative dy/dx = lim 8y/éx

. 8x—0
- lim f(x+8x) — f(x) '
4) d/dx(x“) Y where n is any. real number.

5) Geomemcally, dy/dx represents the slope of the tangent to the curve y = f(x)
at the point (x,y).

6) d/dx(constant) = @

- 7) d/dx[cf(x)] = c df/dx where c is a constant.

8) d/dx[f;(x) * f,(x)] = dfy/dx * dfy/dx.

9) d/dx(uv) = u dv/dx + v du/dx, where u and v are functions of x.
10) % ( _1‘1,_ ) = v(dg/dx) :zu(dv/dx) '
11) d/dx[f($(x))] = di/d - d/dx.
12) d/dx(e™) = e~
13) [d/dx(In x) = 1/x.

14) d/dx(q*) = q" In q, where q is a positive constant.

where u-and v are functions of x. -

dy _ _1
154 = dx/dy’
16) If x = £(t), y = &(t) then
dy _ dyldt
dx = dwdt’

17) Differentiation of functions expressed in the form f(x,y) = 0.

6.11 SOLUTIONS/ANSWERS

El) (a) 1/7 (b) 37 (c) doesnot exist (d) 1 () 2x.
E2) (@ x=%3 (b) no value (©)

"E3) f(x) = 16.
. E4) . Function is not continuous at x = —2. Also, it cannot be redefined at
" %= —2, because the function®does not have a finite limit at x = —2.

ES) (a) () -U ()3 x?

E6) (a) 1 (b) -8 () 1Bx? (@) 25 (e)12u'!
» : (f) _9x-10 . 4
. E7) Slope of graph = % = x*-2x—2 - y
Slope of x—y—6 = 0 is 1 :
We wish x, for which x>—2x-2 = 1
This gives, x = 3 or —1. )
Corresponding to x = 3,y = —9 and for x = —1, y = -7/,
Thus, there are two points (3, —9) and (-1, =7113). :
E8) (a) I5x*+x'? “(b) 1-4x+ x> (o) 32 xm + 125" -12x>?
E9) (a)35v* -6 . (b) 185° — 205> + 12s.
E10) (a) (x +7) (1) + (3—x) (2x) (b) (x*+3x) 2x + (x +2) (3x2)
(c) (x - X + 2) 2x + (x* = 1) (3x*-1).

o
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i 23 18 2 d 2-x_ - Differontis} Calcabnd
B @iy Py Oy @17 (2
E12) (a) x’cos x + 3x%sin x-  (b) cos’x — sin’x -

3cos x + (3x+2) sin x (d) cosec x — xcotxcosecx  (e) 4sinxcosx

© =
N (&0
E13) (a) 3cos3x  (b) —SsinSx  (c) 2xtanx + —X
: - _ d+x®
1 2y, 6(x+1) (2x~3)? — (2x—3)?
@) 5 (2+1) 2x’ (e) 1)
-1 . (1+cos x) sin 2x — sin®x _
® 2v/x sin/x. (@ (1+cos x)?

El4) (g) 30 3(=5)  (b) &"%os8 (c) (-2)e¥  (d) 2se”

(e) e " [ cos x — xsin x |.

B @2 O 0L @ @ Zm

2ﬁ (In x)z

1 22
® T r In(r?)

El6) () <ot ()t (9L (d) - cott.
z

E17) % = 32x? 9 = o3 v . Hence the result.

&
E18) aF
2x+5
‘ ' \
2 -3 _ 2x : )
. 1 1 a
(d) sin"x + i (e) e
E20) (a) —xy )2y () -yx @ Jyx () =L

E21) (a) a¢*Ina  (b) (=2**3n2 () 2xe*

(d) @x)"~* [—Si—‘;i + cosx In (2x) ]

E22) Rate of reactionis 40 = =28
at  (t+2)?

dm | _ dm] _ _
T I;-O-7 ,ﬂt:z—'l.’ls

average rate of reaction in the time interval t = 0

i 1l(dm| . d _ =7-175 _
t? t—ZISE [-—d-r t.=0_£ t;z] = ———2——- = —4.375.

E23) dm | =12

t=2

E24) Differentiate the implicit function with respect to p and get

v V(o)
dp pv — av + 2ab

29
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UNIT 7 APPLICATIONS OF
DIFFERENTIAL CALCULUS

Structure

7.1  Introduction
Objectives

7.2 Tangents and Normals

Tangent to a Curve at a Point

Normal to a Curve at a Point

Tangents and Normals in Parametric Form
7.3 High Order Derivatives

7.4 Maxima and Minima
. Increasing and Decreasing Functions

Concavity
Criteria for Extreme Values

7.5 Asymptotes

7.6  Curve Tracing

7.7 Functions of Two Variables
Limit of a Function of Two Variables
Continuity of a Function of Two Variables
Partial Derivatives
Partial Derivatives of Implicit Functions
Partial Derivatives of Composite Functions
Partial Derivatives of Order Two :

7.8 - Euler’s Theorem '

7.9 Summary

7.10 Solutions/Answers

7.1 INTRODUCTION

In Unit 6, we obtained derivatives of various types of functions and also derived
rules for obtaining these derivatives. In this unit the main emphasis will be on the
applications of derivatives.

In all branches of science we often face problems like : (i) How can we find accurate
values of a function f corresponding to given values of x? (ii) How can we find the
maximum and minimum values of a function f in a certain domain? A simple way
-of tackling such problems is through the application of differentiation. Consider, for
instance, the first question above. One of the ways of calculating functional values
to a certain degree of accuracy is through the expansion of the function as in a
power series. The method of Maclaurin expansion is one such technique, which has
been explained in this unit. We shall also explain the process of finding second

. derivatives, the maxima and minima of a function and of tracing a given curve. We
shall also discuss functions of two variables. .

To start with, we have talked about the problem of finding tangents and normals
to a given curve, which are geometrical applications of differentiation.

| Objectives

After reading this unit, you should be able to
write the equation of the tangent and the normal to a given curve at a given point,
compute the second and higher order derivatives of a given function,
write the power series expansion of some functions,
- compute the maxima and minima of various functions,
identify and draw the graphs of some significant curves,
find the first and second order partial derivatives of a function of two variables
given in explicit, implicit or parametric form. =
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7.2 TANGENTS AND NORMALS

You have already studied in Unit 6, that if a curve is ngen by the equation
30, y = f(x) where f(x) has a derivative f'(x) at every point in the domain of f, then




