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INTRODUCTION 

So far we have been dealing with the distributions of the data involving only one 
variable. Such a distribution is called a univariate distribution. Very often, we have to 
deal with the situations where more than one variables are involved. For example, we 
may like to study the relationship between the heights and weights of adult males, 
quantum of rainfall and the yield of wheat in India over a number of years, doses of 
drug and a response vi2.a dose of insulin and blood sugar levels in a person, the age of 
individuals and their blood pressure, etc. 

In such situations, our main purpose is to determine whether or not a relationship 
exists between the two v ~riables. If such a relationship can be expressed by a 
mathematical formula, then we shall be able to use it for an analysis and hence make 
certain predictions. 

Correlation and regression are methods that deal with the analysis of such 
relationships between various variables and possible predictions. In this unit, we shall 
confine ourselves to analysing the linear relationship between two variables. However, 
we can extend the methods for two variables to the situations where more than two 
variables are studied simultaneously. 

0 bjectives 
After reading this, you should be able to 

describe the correlation between two variables 
compute and interpret correlation coefficient 
describe simple linear regression line, and 
explain how to fit a linear regression line using least squares method. 

CORRELATION AND SCATTER DIAGRAM 

In studying the linear relationship between two variables, we try to examine the 
question "Are the two variables mutually related to each other?" In other words, we 
may ask whether the changes in one variable are accompanied by some corresponding 

. changes in the other variable. For example, to find the relationship between the 
heights and weights of 100 persons, we can arrange them in increasing order of their 
heights and see whether or not the weight increases as the height increases. In other 
words, we are asking, "Do taller people tend to weigh more than shorter people?" 
Note carefully that we are not saying that if an individual is taller than another, he 
has to necessarily weigh heavier. Very seldom, a taller person may weigh less than a 
shorter person, but quite often taller persons have higher weights than shorter 
persons. That is, in general, we may expect to see that as the heights of 100 
individuals are arranged in increasing order and the corresponding weights written 
down. the weights will show a tendencv to increase. 



In such a situation, two variables, then, are said to be mutually related or correlated. Correlation and Regression 

This process of mutual relationship is called correlation between two variables. Note 
that correlation need not be only in one direction. As one variable shows an increase, 
the second variable may show an increase or a decrease. We know, for example, as 
the altitudes of places increase, the atmospheric pressure decreases. 

Hence, whenever two variables are related to each other in such a way that change in 
the one creates a corresponding change in the other,then the variables are said to be 
correlated. r An easy way of studying the correlation of two quantitative variables is to plot them 

I on a graph sheet taking one of the variables on the X-axis and the other on the 
Y-axis. The resulting diagram is called a scatter diagram because it shows how the 
pairs of observations are scattered on the graph sheet. Note that the points 
representing the values of x and y may lie very close to a straight line. This means that 
we can approximate the relationship between the values of x and y by a straight line 
or by some other geometrical curve. If this is a straight line, then we say that the 
relationship between x and y is linear. The relationship between x and y may be a 
curve other than a straight line. The study of such relationships is beyond the scope of 

1 the present syllabus. Hence, we shall confine our discussion to the linear relationship 

Y between x and y. 

Consider the following five artificial sets of 10 pairs of observations each, listed in 
Table 1. The two variables in each set are designated as X and Y. 

TABLE 1 

I 2 3 4 5 6 7 8 9 1 0  

X :  5 10 20 15 6 18 17 12 I5 25 
Set I 

Y :  20 8 10 5 12 16 22 17 12 17 

X : 5 10 7 I5 17 12 20 25 22 I5 
Set I1 

Y :  4 6 9 12 27 14 17 24 21 17 

X :  5 10 8 I5 13 18 20 23 25 .  27 
Set 111 

Y :  25 22 17 20 15 13 17 12 19 10 

Now plot the values of X and Y as (x,y) coordinates in the X-Y plane, as shown on 
next page in Fig. 1. 

The Figure I presents the scatter diagrams of these 3 sets of data, set by set. Study 
these scatter diagrams carefully. 

(i) Set I represents a situation in which we do not see any relationship between the 
values of X and Y. High values of X do not appear to be associated with either high - 
or low values of Y. This indicates that the sample values of X and Y vary 

Note that in studying the independently or that there is no evidence of a relationship between X and Y. When rrlationship between and Y, we 
such a relationship is absent, as in the case of the scatter diagram of Set I (Fig. 1 (a)), rn studying pairstof values of x 
then we say that the two variables are uncorrelated (or not correlated). and Y. 

(ii) Set I1 indicates relationship of a particular type. As X increases, Y also tends to 
increase. In other words, high values of X tend to pair with high values of Y and low 
values of X pair with low values of Y. The scatter diagram of Set 11, as in Fig. 1 (b), 
gives us an evidence of what we call a "positive correlationn between X and Y. Thus, 
we have the following definition. 

Definition : If two variables deviate in the same direction simultaneously, then they 
' are said to  be positively correlated. 

In other words, if the two variables increase or decrease simultaneously (i.e., when 
one increases, the other also increases or. when one decreases, the other also 
decreases), then the correlation between jhe two variables is said to be a positive 
correlation. In this case as shown in Fig. 1 (c), the points follow a line of positive 
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Set 11 set III 

(b) 
Figure I 

slope. For.example, the correlation between heights and weights of a group of persons 
is a positive correlation. 

(iii) In the scatter diagram of Set 111 (Fig. (1 (c)), it is seen that high values of X pair 
with low values of Y and low values of X pair with high values of Y. In such a case, 
we say that X and Y are negatively correlated. In other words, the scatter diagram of 
Set 111 gives the negative correlation. Thus, we have the following definition: 

Definition : If two variables deviate in opposite direction, then they are said to be 
negatively correlated or inversely correlated. 

In other words, if the increase in m e  variable creates a decrease in the other, or the 
decrease in one creates an increase in the other, then the correlation between the two 
variables is said to be negative correlation. In this case, the points of the scatter 
diagram follow a line of negative slope. 

For example, the correlation between the price and demand of a commodity is a 
negative correlation. 

,,Thus, you see how useful the scatter diagram is to study the correlation between two 
variables. Now, you should try the following exercise: 

E 1) Plot the following two sets of paired variables in a scatter diagram and 
comment on~fheir relationship. 

,Set I : 

Set I1 



Thus, we have seen that correlation between two variables may or may not exist. In Correlation and Regression 
case, there exists a correlation between two variables then it is either a positive 
correlation or a negative correlation. How to measure such a correlation, if it exists? 
The most popular 'method used for this purpose is the Pearson Product-Moment 
Correlation Coefficient method due to Karl Pearson, a noted statistician as already 
mentioned in Unit 14. 

17.3 CORRELATION COEFFICIENT 

In the previous section, we saw how a scatter diagram helps us visually to judge 
whether pairs of values of two variables are correlated with each other. If related, 
whether positively or negatively. It would, however, be essential to measure the 
strength of this correlation in order that we may, compare two sets of variables both 
indicating positive or negative correlation. 

As a first step in this direction, we define a measure called 'Co-Variance'. You have 
already studied the term 'variance' in Unit 12. You proved that the variance of a 
variable x is defined as the average sum of the squares of deviations of the values of 
the variable from its mean value. Algebraically, it is given by the formula, 

Variance (x) = z (x - x ) ~  
n 

where % is the mean of the sample and 'n' the number of observations in the sample. 

We now define co-variance (analogously) as 

Cov (x,y) = Co-variance (x,y) = Z(x - X) (Y - 9 

Let us understand this quantity carefully by means of the following illustrations: 

Take 10 pairs' of values of the two variables as 

where (XI, yl) forms the first pair (xz, yz) forms the second pair and so on, till the 10th 
pair (XIO, YIO). 

We can measure the deviation of each x value from its mean Tt and the deviation of 
each y value from its mean y. If x and y vary together positively, then whenever 
(x-jl) is positive, (y-y) will also be positive, and whenever (x-jl) is negative, (y-7) 
will also be negative. However, if x and y vary together negatively, then whenever 
(x-jl) is positive, (y-y) will be negative and vice-versa. Then you take the sum of the 
products of (x-%) and (y-y). Since there are 10 pairs of x and y values, we divide this 
by 10 to get an  average measure of covariance as 

In general, when n pairs of values of the two variables x and y are given, then the 
covariance is given as 

Cov. (x, y) = 

Covariance is a direct measure of correlation between two variables, but it ,cannot be 
used for meaningfully measuring the strength of the relationship between the two 
rariables. This is because covariance can take all values from an infinitely large 
legative value to an infinitely large positive value. In the language of mathematics, it 

can vary from - 00 .(-infinity) to + 00 (+ infinity). 

We would, however, like to measure the strength of the relationship between two 
variables by means of a single number. The correlation coefficient is such a number 
with the property that its value will vary from -1 to +1, taking the value of -1 when 
the relationship between the two variables is perfectly negative, the value of +1 when 



Stmtirticd Inference the relationship is perfectly positive (refer back to Fig. 1 of this unit), and the value of 
0 when there is no relationship. 

In other words, a value r = - 1 will occur when all the points lie exactly on a straight 
line having a negative slope. The value r = + 1 will indicate that all points lie on a 
straight line have positive slope. If r is close to + 1 or - 1, then we say that the linear 
relationship (related by a linear equation) between the two variables is strong and we 
have high correlation. However, if r is close to zero, then we say that the relationship 
between the two variables is weak or perhaps even does not exist. 

The correlation coefficient is denoted by r and is computed by the formula 

Covariance between x and )I r = 
Ji~ariance of X) (variance of Y) 

Note the symbol 'r' is used to denote the correlation coefficient calculated from a 
sample of a population (see Unit IS). The symbol for the correlation coefficient in the 
population is p (pronounced as 'Rho'). In other words, r is usually used for the 
Sample Correlation Coefficient which means a value computed from sample of n 
pairs of measurements whereas p is generally referred to as the Population Correlation 
~oefficieni which means a linear cokelation coefficient for the entire population. 
Sometimes, the correlation coefficient r is also mentioned as the product-moment 
correlation coefficient to distinguish it from the notation p in'the following way: 

The correlation coefficient 'r' between n pairs of observations whose values are 
(XI, YI) ( ~ 2 ,  YZ) ( ~ 3 ,  ~ 3 )  ... (xn, yn) is 

The correlation coefficient between the two random variables X and Y is 

In any case the two are equivalent to each other. For computational purposes, 'r' can 
be writtten as 

Xx. Xy E x y -  - 

where 

i) Xxy is the sum of products of the 'n' pairs of x and y, 
ii) XX' and zy2 are the sums of squares of x's and y's respectively, 
iii) Xx and Xy are the sums of x and y respectively, 
iv) 'n' is the number of pairs of observation. 

Often this correlation coefficient is referred to as Pearson's correlation coefficient. 



There is one important point to be noted in using the Pearson's correlation 
coefficient. It is applicable only when the relationship between the two variables under 
consideration is linear or in other words the two variables have a straight line . 
relationship. If the relationship between two variables is non-linear or curvilinear, 
Pearson's correlation coefficient should not be used to measure the strength of the 
relationship. The scatter diagram, which we learnt in Section 17.2, is very helpful to 
decide whether the relationship is linear or not. 

Example 1 : Compute the correlation coefficient for the following data: 

Solution: From the data, we have 

Therefore, r = 0.947 (calculate yourself) 

Try the following exercises: 

E 2) Compute Pearson's correlation coefficient for the data given in Set I1 of 
Exercise E 1) using the computational formula for r. 

E 3) Draw the scatter diagram of the following data and comment if it is valid to 
represent the relationship seen by a Pearson's correlation coefficient. 

17.4 REGRESSION 

In the previous section you have seen that the data giving the corresponding values of 
two variables can be graphically represented by a scatter diagram. Also, you were 
introduced to a method of finding the relationship between these two variables in 
terms of the correlation coefficient. Very often, in the study of relationship of two 
variables, we come across instances where one of the two variables depends on the 
other. In other words, what is the possible value of the dependent variable when the 
value of independent variable is known. For example, the bodyweight of a growing 
child depends on the nutrient intake of the child or the weight of an individual may be 
dependent on his height or the response L. a drug can be dependent on the dose of the 
drug or the agricultural yield may depena on the quantum of rainlall. In such 
situations, where one of the variables is dependent and the other independent, you 
may ask "can we find a method of estimating the numerical relationship between two 
variables so that given a value of the independent variable, we can predict the average 
value of the dependent variable?". 

Note that we are trying to predict or estimate the average value of the dependent 
variable for a given value of the independent variable. We cannot determine the exact 
value of the dependent variable when the value of the independent variable is known. 
What perhaps we can do is just to make an estimation of the value of the dependent 
variable, knowing fully well that there could be an error in our estimation. This is 
because of the reason that there is no certainty that the estimated value of the variable 
would be exactly the same as the value actually observed. This is also because for a 
given value of the independent variable, the dependent variable will usually show 
some variations in its values. For example, not all persons of a given height, say of 
5' 6" have the same weight. Some will be heavier than others. This is why we talk of 
predicting the average value of the dependent variable for a given value of the 
independent variable. 

Let us consider another situation, where it is not logically meaningful to consider one 
variable as dependent on the other. The heights of brothers and sisters, we expect, will 

Correlation and Regression 



Statistical Inference be related. However, it would not be logical to consider the height of one member of a 
pair to be dependent on the height of the other member. The height of a sister is not 
dependent on the height of the brother while both of them may be related through the 
heights of their parents. 

When two variables are so related that it is logical to think of estimating the value of 
one variable as dependent on the other, then the relationship can be described by 
what is called a Regression Function or Regression Equation, a term introduced by 
Sir Francis Galton (1 822-191 1). 

The words 'dependent' and 'independent' are used in the study of probability with 
different meaning now-adays. Therefore, in the context of regression, the dependent 
variable is called the "outcome" variable and independent variable is called the 
"predictor" variable. We shall stick to this terminology in studying regression, since in 
regression, our interest is in prediction. Hence Y will be called the outcome variable, 
and X the predictor variable. 

The simplest form of the regression functjon r e l a tg  the predictor and outcome 
variables is that of a straight line as shown in Fig. 2 belo*. That is, the nature of 
relationship between Y i d  X is linear. 

4 

In this situation, the regression function takes the form, Y = a + bX where Y is the 
outcome vaiiable, X the predictor variable, and a and b are constants to be estimated 
from a given set of data. Figure 3 below presents a straight line relationship. 



In the Fig. 3 Correlation and Regression 

i) 'a' is the intercept that the straight line Y = a + bX makes on the Y axis, that is, 
Y = a, when X = 0. 

ii) 'b' is the slope of the line, that is, the increase in the value of Y for every unit 
increase in the value of X. 

Note that b is marked on the graph as the height that the straight line gains 
corresponding to an increase of one unit in X value. Further, b is positive when Y 

a 
increases when X increases and is negative when Y decreases as X increases or Y 
decreases as X increases. If Y takes the value 0 when X is 0, then 'a' becomes equal to 
0 so that the regression line passes through the origin-that is where both X and Y are 

b 0. The regression equation then is written as 

Very often, the results of an investigation (either by an experiment or by a survey) 
may be summarized and approximated by a relation or an equation which represents 
a line. In the foregoing example, a line of the form y = a + bX has been used to 
approximate the given data. Thus there is a problem of finding equations to straight 
lines which fit the given data. We shall, therefore, try to find the solution to this 
problem in the next section. 

17.5 FITTING OF LINEAR REGRESSION 

The regression line Y = a + bX has to be estimated from a given set of n pairs of 
observations of X and Y. We have seen earlier that the first essential step in trying to 
understand the nature of the relationship between two variables is to plot them on a 
scatter diagram. Consider the following 16 pairs of observations of heights and 
weights of 16 adult males. 

Table 2 

Heights (cm) .ad Welghts (kg) of 16 Mdea 

Serial No. of Height Weight 
individual (cm) (kg.) 

1 178 80 
2 176 75 
3 170 72 
4 174 74 
5 165 68 
6 162 64 
7 178 76 
8 165 66 
9 174 72 

10 172 70 
I I 160 63 
12 162 6 1 
13 160 60 
14 170 69 
I5 176 72 
16 172 67 

These 16 pairs of observations are presented in a scatter diagram in ~ i ~ u r e  4 along 
with the best fitting line described in Figure 4. You can easily see that the relationship 
between the two variables is linear. 

We would now like to fit a straight line to this set of points on the scatter diagram. 
One way to do it is to fit a straight line by visual judgement. However, since this is 
subjective, we may not at all fit the same straight line to the given set of data. In order 
to avoid subjectivity and hence differences in deci'ding which line "best" fits the data 
we would like to adopt a mathematical approach which uniquely determines the 
"best" fitting straight line. The approach we are going t6 adopt is called the Method 
-r'r ---A m ------- I-L- -----A -.-- :- -- '--1l---.-. 
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Height 

c Fig. 4 

difference between the value yl and the corresponding value as determined from the 
straight line which fit to data. We denote this difference by dl, which is generally 
called as the deviation. Of all the straight lines that can be fitted to this data, we 
define that line as the "best" which minimises the sum of squares of deviations of the 
individual points from the line, the deviations being measured along the Y-axis, i.e., if 
d, denote the deviations then C di2 is minimum. In Figure 4, the deviations of the 
points from the best fitting line are marked in dotted lines. Since we are attempting toL 
fit a straight line of the form 

the deviations of the observed values of Y from the line have to be measured in the 
units in which the dependent variable Y is expressed. That is why in the diagram, you 
find the deviations of the observed Y values from the line marked (in dotted lines) in 
the direction of the Y axis. But then you may raise the following questions: "why 
should we sum the squares of these deviations and choose that line which minimises 
this sum? Why not just add up these deviations, some of which are positive and others 
negative and take that line whichSgives a minimum value to this sum?" 

The reason why we do not take just the sum of these deviations is that more than one 
straight line may satisfy the condition of this sum having the same minimum value. 
For example, we may be able to fit two different straight lines to this data both of 
which may give the sum of the deviations as zero. We want that we should get a 
unique line by our method. Minimising the sum of squares of the deviations will give 
a unique line or only a single line. Let us express the above idea in simple algebraic 
terms. 

We want (Y -a - b ~ ) '  for the 16 pairs of observations in our example to be 
minimum. In the equation Y = a + bX we can substitute the values of X and Y but 
WP have tn rctimatp the twn ~ i n k n n w n  ennctantc a and h 



That is, we want to find the value of a and b such that (Y -a - b ~ ) '  is a minimum. Correlation and Regression 

This can be done by using calculus. 

We are not actually doing this here but we only give the expressions for a and b which 
minimise (Y - a - b ~ ) ' .  The estimates of a and b are 

b 

C xy - Cx. Cy 

Then calculate a by the formula 

Thus a and b can be calculated from the given set of data. For the example given in 
Table 2 of 16 pairs of heights and weights, we have 

so that the regression equation is given by 

That is the line drawn on the scatter diagram in Figure 4. The Method of Least 
Squares as described here is the best method for fitting a straight line regression 
provided the following assumptions are satisfied: 

1) For every value of X, the predictor variable, the value of Y have a mean that is . 
given by the equation a + px where a and /3 are parameters corresponding to a 
and b respectively that we estimated from the sample. In the example, we 
considered 16 pairs of individuals. If we had measured all the individuals in the 
population from which we got 16 pairs of observations, then corresponding to 
each height, the mean weight would be given by a + px. 

2) The distribution of Y values around this mean a + BX corresponding to each X, 
will have the same standard deviation (i.e., the variability of Y remains constant 

I at all values of X). 

3) The distribution of Y will be Gaussian or normal as it is often called. 
* Let us try the following exercises: 

E 4) The data below show the initial weight (grams) and gains in weight of 12 
female rats on a high protein diet from the 20th to 80th day after their birth. 
Examine the data to decide if the gain in weight depends on the initial weight. 

I Compute the linear regression equations of gain in weight on initial weight. 
Present your results on a graph taking initial weight on the X-axis and gain in 
weight on the Y-axis. 

Rat Number 1 

I Initial weight (gm) 45 50 69 68 76 46 59 74 54 62 64 481 

Gain in weight (gm) 93 128 106 126 154 79 112 128 120 118 120 98 



Statistical Inference E 5 )  The data below give the percentage of fruits affected by worms and the 
corresponding number fruits on a sample of 14 apple fruit trees. Examine 
through fitting a linear regression to this data, if the percentage of fruits 
affected by worms is dependent on the number of.fruits on the tree. Present 
the data on a graph paper. 

Tree number in the sample trees 

1 2  3 4  5  6  7 8  9 1 0 l i 1 2 1 3 1 4  

Number of 
fruits (in 5 8  9  15 12 6  10 8  7 16 4  1 1  13 14 
hundred) 

Per cent 
affected 60 44 41 1 1  28 54 37 46 52 4  65 32 24 17 
by worms 

Regression of Y on X and Regression of X on Y b 

In our earlier discussion, we have considered one of the variables, Y as the outcome 
variable and X as the predictor variable. What happens if we reverse the variables, 
i.e., what happens if we consider X as the outcome variable and Y as the predictor 
variable? We get a regression of the form 

where a' and b' are different from a and b of the regression equation Y = a + bx. In 
other words, the regression of Y on X on the regression of X and Y are two different 
lines. It is easy to see why they are so. Recall that for fitting regression of Y on X we 
minimised (Y - a - d x ) ~ ,  Y being the observed X value, that is, we minimised the 
sum of squares of the deviations of the observed values from those predicted by the 
"best" regression line. These deviations, we noted, were measured along the Y axis or, 

\ in other words, the deviations were the vertical deviations from the line along the Y 
axis. If we fit the regression line of X on Y, then we will have to minimise 
(X-a'-b' Y)? (X beipg the observed Y value) or, in other words, minimise the 
deviations from the "best" line, measuring the deviations along the X-axis. We 
consider horizontal instead of vertical deviations which means the interchange of 
X-axis and Y-axis. That is, we get two different lines for regression of Y on X and X 
on Y. 
We now end this by giving a summary of what we have covered in it. 

17.6 SUMMARY 

In this unit, we have 

1) described scatter diagram in studying the nature and strength of relationship 
between two quantitative variables, 

2) described positive correlation and negative correlation, 

3) defined the Pearson's correlation coefficient, 

4) described the concept of statistical regression and distinguished it from the 
concept of correlation, 

5 )  described the method of least squares for fitting a linear regression line to a given 
set of data and defined the regression coefficient, 

6) distinguished between the two regression lines of regression of Y on X and 
regression of X on Y. 

E 1) Set I : There is no relationship between X and Y 
Set I1 : The relationship is linear and negative 



Fig. 5 (c) 

E 2) The correlation coefficient for set I1 of E 1) is 

Xx . X y  Xxy - - 

= - 0.953. The correlation is negative. 
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Statietical Inference E 3) The relationship between X and Y is non-linear and hence, Pearson's 
correlation coefficient is not applicable here. 

zx 'xy = 85843.5 E 4) Xx = 758, Zy = 1359, Zxy = 88914, - 
n 

zx. Zy Z x y -  - 

a = j i - b x = [ . - - -  'Y b  - XX ] = 24.5924 
n n 

The regression equation is Y = 24.5924 + 14030X 

z x .  xy  z x v  - - 

Regression equation Y = 84.6838 - 4.8592 X 

Note that the regression coefficient b is negative. 




